干旱区研究 ›› 2023, Vol. 40 ›› Issue (5): 829-839.doi: 10.13866/j.azr.2023.05.15 cstr: 32277.14.j.azr.2023.05.15

• 生态与环境 • 上一篇    下一篇

面向生态系统服务供需的开都-孔雀河流域生态安全格局研究

闫豫疆1(),李建贵2(),李均力3,蒋腾4   

  1. 1.新疆农业大学经济管理学院,新疆 乌鲁木齐 830052
    2.新疆农业大学林学与风景园林学院,新疆 乌鲁木齐 830052
    3.中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    4.新疆林业科学院,新疆 乌鲁木齐 830018
  • 收稿日期:2023-01-27 修回日期:2023-02-14 出版日期:2023-05-15 发布日期:2023-05-30
  • 作者简介:闫豫疆(1986-),男,博士研究生,主要从事区域生态与环境管理研究. E-mail: 330730542@qq.com
  • 基金资助:
    中国科学院创新交叉团队(JCTD-2019-20);国家自然科学基金(U203201);国家自然科学基金(41671034);第三次新疆综合科学考察项目(2021xjk-k1400)

Construction of ecological security patterns in the Kaidu-Kongque River Basin based on the supply and demand of ecosystem services

YAN Yujiang1(),LI Jiangui2(),LI Junli3,Jiang Teng4   

  1. 1. College of Economics and Management, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2. College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    3. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    4. Xinjiang Academy of Forestry Sciences, Urumqi 830018, Xinjiang, China
  • Received:2023-01-27 Revised:2023-02-14 Published:2023-05-15 Online:2023-05-30

摘要:

构建干旱区生态安全格局有利于促进区域生态系统服务供应与需求之间的动态平衡。以干旱区开都-孔雀河流域为研究区,利用InVEST模型、RWEQ模型和Getis-Ord Gi*模型分析生态供给源地,以土地利用程度、地均GDP、人口密度和夜间灯光指数分析生态需求源地,并基于最小累积阻力模型确定供给源地与需求源地之间的生态廊道,从而构建研究区生态安全格局。研究结果表明:(1) 开都-孔雀河流域生态供给源地14个,占研究区面积的21.46%,重点生态需求源地共9个斑块,占流域总面积4.63%;生态廊道126条,重要廊道17条,总长度654.68 km;生态节点65个,重点生态节点24个。(2) 开都-孔雀河流域生态系统服务供给与需求空间错位明显,高供给区域与高需求区域呈现出以城镇边界为分界线的明显特征。(3) 结合研究区自然地理特征和景观生态系统服务流动性,运用阻力面模型,构建“两核心、两片区、三横四纵多节点”的开都-孔雀河流域生态安全格局可为保障区域生态系统服务功能和可持续发展政策的制定提供科学参考。

关键词: 生态系统服务供给与需求, 生态廊道, 生态安全网络, 开都-孔雀河流域

Abstract:

The construction of an ecological security pattern in arid zones is conducive to promoting a dynamic balance between the supply and demand of regional ecosystem services. This study involves the Kaidu-Kongque River Basin in an arid zone and uses the InVEST model, the RWEQ model, and the Getis-Ord Gi* model to analyze the ecological supply sources, degree of land use, GDP per km2, population density, and the nighttime light index. This approach was used to analyze the ecological demand sources and determine the ecological corridors between supply and demand sources based on the minimum cumulative resistance model so as to construct an ecological security pattern of the study area. The results of the study are as follows: (1) There are 14 ecological supply source areas in the Kaidu-Kongque River Basin, accounting for 21.46% of the study area, and a total of 9 patches of key ecological demand source areas, accounting for 4.63% of the total area of the basin; 126 ecological corridors, including a total of 17 important corridors with a total length of 654.68 km; 65 ecological nodes, including 24 key ecological nodes. (2) The spatial mismatch between supply and demand of ecosystem services in Kaidu-Kongque River Basin is obvious, and the high supply area and high demand area show obvious characteristics with urban boundary as the dividing line. (3) Combining the natural geographic characteristics and the mobility of landscape ecosystem services in the study area, the resistance surface model is used to construct “two cores, two zones, three horizons, four verticals, and multiple nodes” of the Kaidu-Kongque River Basin. In conclusion, the ecological security pattern of the Kaidu-Kongque River Basin can provide a scientific reference for protecting regional ecosystem service functions and formulating sustainable development policies.

Key words: ecosystem service supply and demand, ecological corridor, ecological safety network, Kaidu-Kongque River Basin