干旱区研究 ›› 2022, Vol. 39 ›› Issue (6): 1966-1975.doi: 10.13866/j.azr.2022.06.26

• 农业生态 • 上一篇    下一篇

温度升高下降水和施氮对旱地春小麦产量和生物量影响的模拟与分析

张康1(),聂志刚1,2(),王钧1,李广3   

  1. 1.甘肃农业大学信息科学技术学院,甘肃 兰州 730070
    2.甘肃农业大学资源与环境学院,甘肃 兰州 730070
    3.甘肃农业大学林学院,甘肃 兰州 730070
  • 收稿日期:2022-03-21 修回日期:2022-09-16 出版日期:2022-11-15 发布日期:2023-01-17
  • 通讯作者: 聂志刚
  • 作者简介:张康(1995-),男,硕士研究生,主要研究方向为农业生态模型. E-mail: 2942138300@qq.com
  • 基金资助:
    国家自然科学基金项目(32160416);甘肃省高等学校创新基金项目(2020B-121);甘肃省教育厅产业支撑计划项目(2021CYZC-15);甘肃省教育厅产业支撑计划项目(2022CYZC-41)

Simulation and analysis of the effects of precipitation and nitrogen application on the yield and biomass of spring wheat in dryland under elevated temperature

ZHANG Kang1(),NIE Zhigang1,2(),WANG Jun1,LI Guang3   

  1. 1. College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2. College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3. College of Forestry, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2022-03-21 Revised:2022-09-16 Online:2022-11-15 Published:2023-01-17
  • Contact: Zhigang NIE

摘要:

为了探索温度升高下降水和施氮对半干旱地区春小麦产量和生物量的影响。基于甘肃省定西市安定区1971—2018年气象数据,依据定西市安定区凤翔镇安家沟村2014—2018年大田试验数据,利用APSIM进行了5个温度变化梯度(0 ℃,0.5 ℃,1 ℃,1.5 ℃,2 ℃),5个降水变化梯度(-20%,-10%,0%,10%,20%)和4个施氮处理(0 kg·hm-2,55 kg·hm-2,110 kg·hm-2,220 kg·hm-2)的模拟实验,通过回归方程、单因素分析和互作分析对旱地春小麦产量和生物量进行分析,通过温度升高下降水和施氮的关系对小麦产量进行分析。结果表明:(1) 模型模拟的小麦产量和生物量归一化均方根误差(NRMSE)为7.47%和7.66%,模型有效性指数(ME)为0.91和0.85,灌浆期NRMSE为1.73%,模型有效性指数为0.98,表明该模型可以较好地反映温度、降水和施氮对春小麦产量和生物量影响。(2) 当温度升高时,春小麦产量和生物量呈开口向上抛物线负效应变化;当施氮量增加时,春小麦产量和生物量呈开口向下抛物线变化,阈值为122.11 kg·hm-2和129.06 kg·hm-2,产量和生物量的最优值为2574.86 kg·hm-2和5777.39 kg·hm-2;降水量增加会对春小麦产量和生物量产生呈开口向上抛物线正效应变化。(3) 温度和施氮量之间的交互作用为负;温度和降水量之间的交互作用为负;施氮量和降水量之间的交互作用为正。(4) 0 ℃、0.5 ℃、1 ℃、1.5 ℃、2 ℃下产量达到最优时,降水量均应增加20%,施氮量分别为:156.2 kg·hm-2、149.6 kg·hm-2、131.56 kg·hm-2、110.0 kg·hm-2、107.8 kg·hm-2。(5) 温度、施氮和降水3个因素对产量影响顺序为: 降水>施氮>温度;合理的水氮协同能够减缓温度升高对产量的负效应。

关键词: APSIM, 小麦, 温度, 降水, 施氮, 生物量, 产量

Abstract:

To explore the effects of temperature increase, water decrease, and nitrogen application on spring wheat yield and biomass in semi-arid areas. Based on the meteorological data from 1971 to 2018 in the Anding District, Dingxi City, and the field test data from 2014 to 2018 in the Anjiagou Village, Fengxiang Town, Anding District, Dingxi City, and Gansu Province, this study conducted five temperature gradient (0 ℃,0.5 ℃,1 ℃,1.5 ℃,2 ℃), five precipitation gradient (?20%, ?10%, 0%, 10%, and 20%), and four nitrogen treatments (0 kg?hm?2, 55 kg?hm?2, 110 kg?hm?2, and 220 kg?hm?2) to analyze the yield and biomass of spring wheat in dryland using regression equation, single factor analysis, and interaction analysis. The wheat yield was analyzed using the relationship between temperature increase and nitrogen application. The results show that: (1) The normalized root mean square error (NRMSE) of wheat yield and biomass simulated by the model was 7.47% and 7.66%, respectively, and the model validity index was 0.91 and 0.85, respectively. The NRMSE of wheat yield and biomass simulated by the model was 1.73%, and the model validity index was 0.98. The results showed that the model could well reflect the effects of temperature, precipitation, and nitrogen application on spring wheat yield and biomass. (2) When the temperature increased, spring wheat yield and biomass showed a parabolic negative effect. Spring wheat yield and biomass presented a downward parabola with a threshold of 122.11 kg?hm?2 and 129.06 kg?hm?2, respectively, and the optimal yield and biomass values were 2574.86 kg?hm?2 and 5777.39 kg?hm?2, respectively. The increased precipitation has a positive opening parabolic effect on spring wheat yield and biomass. (3) The interaction between the temperature and the nitrogen application rate was negative. The interaction between temperature and precipitation was negative. The interaction between the nitrogen application rate and precipitation was positive. (4) When the yield was optimal at 0 ℃,0.5 ℃,1 ℃,1.5 ℃ and 2 ℃, precipitation should be increased by 20%, and nitrogen application should be 156.2 kg?hm?2, 149.6 kg?hm?2, 131.56 kg?hm?2, 110.0 kg?hm?2, and 107.8 kg?hm?2, respectively. (5) The effect order of temperature, nitrogen application, and precipitation on yield is precipitation > nitrogen application > temperature. Reasonable coordination of water and nitrogen can mitigate the negative effect of temperature increase on yield.

Key words: APSIM, wheat, temperature, precipitation, nitrogen application, biomass, yield