干旱区研究 ›› 2025, Vol. 42 ›› Issue (6): 1032-1042.doi: 10.13866/j.azr.2025.06.07 cstr: 32277.14.AZR.20250607

• 水土资源 • 上一篇    下一篇

基于多特征融合的面向对象冰川边界提取

林洲艳1(), 王霞迎1,2,3,4, 夏元平1,2,3,4()   

  1. 1.东华理工大学测绘与空间信息工程学院,江西 南昌 330013
    2.东华理工大学自然资源部环鄱阳湖区域矿山环境监测与治理重点实验室,江西 南昌 330013
    3.东华理工大学江西省流域生态过程与信息重点实验室,江西 南昌 330013
    4.东华理工大学南昌市景观过程与国土空间生态修复重点实验室,江西 南昌 330013
  • 收稿日期:2024-12-19 修回日期:2025-02-13 出版日期:2025-06-15 发布日期:2025-06-11
  • 通讯作者: 夏元平. E-mail: ypxia@ecut.edu.cn
  • 作者简介:林洲艳(1998-),女,硕士研究生,主要从事冰川变化与气候响应研究. E-mail: 2023110417@ecut.edu.cn
  • 基金资助:
    国家自然科学基金项目(42174055);国家自然科学基金项目(42374040);东华理工大学博士启动基金(DHBK2019187)

Object-based glacier boundary extraction utilizing multi-feature fusion

LIN Zhouyan1(), WANG Xiaying1,2,3,4, XIA Yuanping1,2,3,4()   

  1. 1. School of Geomatics and Spatial Information Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China
    2. Key Laboratory of Mine Environmental Monitoring and Improving Around Poyang Lake, Ministry of Natural Resources, East China University of Technology, Nanchang 330013, Jiangxi, China
    3. Jiangxi Key Laboratory of Watershed Ecological Process and Information, East China University of Technology, Nanchang, 330013, Jiangxi, China
    4. Nanchang Key Laboratory of Landscape Process and Territorial Spatial Ecological Restoration, East China University of Technology, Nanchang 330013, Jiangxi, China
  • Received:2024-12-19 Revised:2025-02-13 Published:2025-06-15 Online:2025-06-11

摘要:

鉴于像素级分类在光谱特征相近情况下难以准确识别冰川变化,特别是表碛覆盖区的光谱特征与周围山地、岩石相似度高,导致其提取精度较低。为此,本文以音苏盖提冰川和雅弄冰川为研究区,基于Google Earth Engine平台,结合光谱指数、微波纹理和地形特征,采用面向对象(OB)的机器学习算法进行冰川自动提取,并与基于像素(PB)分类方法进行对比。 结果表明:(1) 基于多特征融合的OB分类方法有助于提高冰川提取精度。其中,OB_RF分类的总体精度、Kappa系数和F1分数分别为98.1%、0.97和98.67%,优于OB_CART和OB_GTB方法。与PB_RF分类相比,总体精度、Kappa系数和F1分数分别提升了1.7%、0.024和5.57%。(2) 2001—2022年音苏盖提冰川和雅弄冰川年平均退缩率分别为0.08%、0.13%。(3) 音苏盖提冰川表碛区主要分布在海拔5000 m以下,而雅弄冰川表碛区主要分布在海拔4800 m以下,2001—2022年两条冰川表碛覆盖区均呈现向上扩张趋势。

关键词: 冰川边界提取, 面向对象, 基于像素, 机器学习, 多特征融合

Abstract:

Pixel-based classification struggles with the accurate identification of glacier changes in areas with similar spectral characteristics, particularly in debris-covered areas where spectral features closely resemble the surrounding mountains and rocks, thereby resulting in low extraction accuracy. This study investigates the Yinsugaiti and Yalong Glaciers using Google Earth Engine to integrate spectral indices, microwave texture features, and topographic data. An object-based (OB) machine learning algorithm is applied for automated glacier extraction and compared to pixel-based (PB) classification methods. The results show the following. (1) The OB classification approach, integrating multi-feature fusion, significantly improved the glacier extraction accuracy. The OB_RF classifier achieved an overall accuracy of 98.1%, a Kappa coefficient of 0.97, and an F1-score of 98.67%, outperforming the OB_CART and OB_GTB classifiers. When compared to PB_RF, the overall accuracy, Kappa coefficient, and F1-score increased by 1.7%, 0.024, and 5.57%, respectively. (2) Between 2001-2022, the Yinsugaiti and Yalong Glaciers retreated at average annual rates of 0.08% and 0.13%, respectively. (3) Supraglacial debris was primarily distributed below 5000 and 4800 m on the Yinsugaiti and Yalong Glacier, respectively. Over the same period, debris-covered areas on both glaciers expanded upward.

Key words: glacier boundary extraction, object-based, pixel-based, machine learning, multi-feature fusion