干旱区研究 ›› 2024, Vol. 41 ›› Issue (7): 1195-1206.doi: 10.13866/j.azr.2024.07.11 cstr: 32277.14.j.azr.2024.07.11
崔国龙1(), 李强峰1(), 高英2, 刘维军2, 张梅2
收稿日期:
2024-01-25
修回日期:
2024-06-04
出版日期:
2024-07-15
发布日期:
2024-08-01
通讯作者:
李强峰. E-mail: 1324985124@qq.com作者简介:
崔国龙(2000-),男,硕士研究生,主要从事高寒森林土壤生态研究. E-mail: cgl_0917@163.com
基金资助:
CUI Guolong1(), LI Qiangfeng1(), GAO Ying2, LIU Weijun2, ZHANG Mei2
Received:
2024-01-25
Revised:
2024-06-04
Published:
2024-07-15
Online:
2024-08-01
摘要:
为探究高原森林生态系统典型植被下土壤微生物群落变化特征,以青海大通北川河源区自然保护区为例,对6种典型植被(白桦、青杨、青海云杉、华北落叶松、金露梅、草地)0~20 cm深的土壤为研究对象,采用Illumina NovaSeq测序方法测定土壤微生物群落组成及多样性,化学分析法测定土壤理化性质指标。结果表明:(1) 6种植被样地中共得到细菌39门、785属、1651种,真菌17门、439属、559种,共有菌物种数均小于特有菌。6种植被土壤优势细菌门均为变形菌门(Proteobacteria)、放线菌门(Actinobacteriota)和酸杆菌门(Acidobacteriota),土壤优势真菌门为担子菌门(Basidiomycota)和子囊菌门(Ascomycota)。(2) 6种植被细菌群落间差异较大,青杨细菌群落的α多样性最高;真菌群落间存在相似性,白桦真菌群落的α多样性最高。(3) 细菌门水平上,土壤pH与脱硫杆菌门(Desulfobacterota)显著负相关(P<0.05);有机质、全氮与变形菌门呈极显著正相关(P<0.01)。真菌门水平上,土壤pH与根肿黑粉菌门(Entorrhizomycota)呈显著负相关(P<0.05);有机质、全氮与捕虫霉门(Zoopagomycota)呈极显著正相关(P<0.01),与球囊菌门(Glomeromycota)呈显著负相关(P<0.05)。土壤pH是影响土壤细菌和真菌群落变化的关键环境因子。
崔国龙, 李强峰, 高英, 刘维军, 张梅. 青海大通北川河源区典型植被土壤微生物群落结构特征及影响因素[J]. 干旱区研究, 2024, 41(7): 1195-1206.
CUI Guolong, LI Qiangfeng, GAO Ying, LIU Weijun, ZHANG Mei. Characteristics of soil microbial communities structure and influencing factors in typical vegetation in the Beichuan River Source Area of Datong, Qinghai[J]. Arid Zone Research, 2024, 41(7): 1195-1206.
表1
研究样地基本信息"
植被类型 | 海拔/m | 坡度/(°) | 平均株高/m | 平均胸径/cm | 优势植物种类 |
---|---|---|---|---|---|
白桦(BH) | 2963.31±24.38 | 28.33±1.70 | 15.64±0.56 | 11.23±0.33 | 白桦(Betula platyphylla)、山生柳(Salix oritrepha)、鬼箭锦鸡儿(Caragana jubata)、高山杜鹃(Rhododendron lapponicum)、唐松草(Thalictrum aquilegiifolium var. sibiricum)等 |
青杨(QY) | 2858.80±32.63 | 18.5±2.50 | 25.33±0.32 | 13.41±0.21 | 青杨(Populus cathayana)、直穗小檗(Berberis dasystachya)、银露梅(Dasiphora glabra)、唐古特忍冬(Lonicera tangutica)等 |
青海云杉(YS) | 2990.91±32.28 | 19.33±4.11 | 28.45±0.42 | 18.20±0.18 | 青海云杉(Picea crassifolia)、扁刺峨眉蔷薇(Rosa omeiensis f. pteracantha)、高山绣线菊(Spiraea alpina)、问荆(Equisetum arvense)、等 |
华北落叶松(LYS) | 2875.72±57.46 | 16.50±1.50 | 29.51±0.59 | 19.23±0.26 | 华北落叶松(Larix gmelinii var. principis-rupprechtii)、微孔草(Microula sikkimensis)、莛子藨(Triosteum pinnatifidum)、甘肃马先蒿(Pedicularis kansuensis)等 |
金露梅(JLM) | 3137.91±42.09 | 18.33±1.50 | - | - | 金露梅(Dasiphora fruticosa)、覆盆子(Rubus idaeus)、葛缕子(Carum carvi)、白缘蒲公英(Taraxacum platypecidum)等 |
草地(GM) | 3016.64±59.77 | 9.50±2.5 | - | - | 嵩草(Carex myosuroides)、高原毛茛(Ranunculus tanguticus)、刺芒龙胆(Gentiana aristata)等 |
表2
不同植被土壤理化性质"
理化性质 | 白桦 | 青杨 | 青海云杉 | 华北落叶松 | 金露梅 | 草地 |
---|---|---|---|---|---|---|
pH | 6.60±0.14a | 6.65±0.14a | 6.28±0.34bc | 6.49±0.09a | 6.23±0.11c | 6.33±0.21bc |
有机质/(g·kg-1) | 195.69±16.83a | 82.50±67.57c | 147.05±49.44ab | 122.32±27.55bc | 131.47±37.96bc | 103.40±64.86bc |
全氮/(g·kg-1) | 8.08±0.65a | 5.34±2.51b | 6.68±1.9ab | 6.97±0.77ab | 6.10±0.62b | 5.47±1.72b |
全磷/(g·kg-1) | 0.71±0.03c | 0.89±0.16ab | 0.83±0.05b | 0.99±0.06a | 0.96±0.10a | 0.93±0.12a |
全钾/(g·kg-1) | 17.24±0.48c | 19.87±0.51a | 18.43±0.80b | 18.18±0.51b | 18.81±0.61b | 16.92±0.62c |
有效磷/(mg·kg-1) | 7.54±1.32a | 5.53±2.54b | 5.91±1.75b | 7.55±1.49a | 5.24±0.92b | 6.55±1.08b |
速效钾/(g·kg-1) | 0.16±0.05b | 0.29±0.14a | 0.16±0.02b | 0.28±0.14a | 0.18±0.03b | 0.17±0.04b |
碱解氮/(g·kg-1) | 0.54±0.08ab | 0.34±0.17c | 0.62±0.10a | 0.51±0.04ab | 0.49±0.05b | 0.45±0.19bc |
铵态氮/(mg·kg-1) | 15.3±6.24a | 1.70±0.44c | 9.15±10.02b | 1.55±0.29c | 1.95±1.64c | 2.40±1.42c |
硝态氮/(mg·kg-1) | 15.74±4.11a | 20.31±15.44a | 16.31±4.52a | 20.19±3.55a | 15.59±3.71a | 20.06±9.34a |
表3
土壤微生物α多样性指数统计"
微生物 | 植被 | Chao1指数 | ACE指数 | Shannon指数 | Good’s coverage指数 |
---|---|---|---|---|---|
细菌 | 白桦 | 1541.05±119.17a | 1526.95±121.83a | 9.77±0.09a | 0.9990±0.00a |
青杨 | 1551.55±211.37a | 1538.86±207.01a | 9.82±0.14a | 0.9991±0.00a | |
青海云杉 | 1491.01±180.39a | 1482.12±183.8a | 9.72±0.22a | 0.9991±0.00a | |
华北落叶松 | 1520.75±161.6a | 1510.24±164.89a | 9.77±0.15a | 0.9991±0.00a | |
金露梅 | 1419.07±260.27a | 1411.12±258.09a | 9.68±0.26a | 0.9991±0.00a | |
草地 | 1403.32±99.28a | 1393.27±100.85a | 9.68±0.08a | 0.9991±0.00a | |
真菌 | 白桦 | 289.17±84.14a | 289.74±84.54a | 5.38±0.74a | 0.9998±.0.00b |
青杨 | 207.06±56.95a | 206.43±55.76a | 4.48±0.81a | 0.9999±0.00ab | |
青海云杉 | 269.61±97.76a | 268.89±97.79a | 4.86±1.6a | 0.9999±0.00ab | |
华北落叶松 | 283.22±33.87a | 282.77±33.95a | 5.11±0.93a | 0.9999±0.00a | |
金露梅 | 264.1±75.26a | 263.2±73.93a | 4.69±1.44a | 0.9999±0.00a | |
草地 | 269.34±99.48a | 269.44±99.08a | 5.08±1.35a | 0.9999±0.00a |
[1] | 朱庆征, 冯志培, 冯二朋, 等. 祁连山区不同海拔植被带土壤微生物磷脂脂肪酸分析[J]. 中国水土保持科学(中英文), 2023, 21(6): 32-42. |
[Zhu Qingzheng, Feng Zhipei, Feng Erpeng, et al. Phospholipid fatty acid analysis of soil microorganisms in different vegetation zones along an altitudinal gradient in Qilian Mountains[J]. Science of Soil and Water Conservation, 2023, 21(6): 32-42.] | |
[2] | 肖烨, 黄志刚, 李友凤, 等. 赤水河流域典型植被类型的土壤微生物群落结构与多样性[J]. 水土保持研究, 2022, 29(6): 275-283. |
[Xiao Ye, Huang Zhigang, Li Youfeng, et al. Soil microbial community structure and diversity of typical vegetation types in Chishui River basin[J]. Research of Soil and Water Conservation, 2022, 29(6): 275-283.] | |
[3] | 王竹, 刘扬, 王芳, 等. 黑河上游不同植被类型土壤细菌群落多样性、功能及季节动态[J]. 环境科学, 2023, 44(11): 6339-6353. |
[Wang Zhu, Liu Yang, Wang Fang, et al. Effects of vegetation types and seasonal dynamics on the diversity and function of soil bacterial communities in the upper reaches of the Heihe River[J]. Environmental Science, 2023, 44(11): 6339-6353.] | |
[4] | Liu J L, Wang Q Q, Ku Y L, et al. Precipitation and soil pH drive the soil microbial spatial patterns in the Robinia pseudoacacia forests at the regional scale[J]. Catena, 2022, 212(50): 106120. |
[5] | 蒋星驰, 李俊瑶, 陈峰, 等. 阴山北麓荒漠区6种植物群落的土壤细菌特征[J]. 干旱区研究, 2022, 39(4): 1122-1132. |
[Jiang Xingchi, Li Junyao, Chen Feng, et al. Soil bacterial characteristics of six plant communities in the desert areas to the North of Yinshan Mountains[J]. Arid Zone Research, 2022, 39(4): 1122-1132.] | |
[6] | 徐文煦, 王继华, 张雪萍, 等. 大兴安岭森林土壤微生物生态分布研究[J]. 哈尔滨师范大学自然科学学报, 2009, 25(1): 67-70. |
[Xu Wenxu, Wang Jihua, Zhang Xueping, et al. Study on the distribution status of soil microbiota of various forest types in Daxinganling[J]. Journal of Natural Sciences of Harbin Normal University, 2009, 25(1): 67-70.] | |
[7] | 吴则焰, 林文雄, 陈志芳, 等. 武夷山国家自然保护区不同植被类型土壤微生物群落特征[J]. 应用生态学报, 2013, 24(8): 2301-2309. |
[Wu Zeyan, Lin Wenxiong, Chen Zhifang, et al. Characteristics of soil microbial community under different vegetation types in Wuyishan National Nature Reserve, East China[J]. Journal of Applied Ecology, 2013, 24(8): 2301-2309.] | |
[8] |
满百膺, 向兴, 罗洋, 等. 黄山典型植被类型土壤真菌群落特征及其影响因素[J]. 菌物学报, 2021, 40(10): 2735-2751.
doi: 10.13346/j.mycosystema.210279 |
[Man Baiying, Xiang Xing, Luo Yang, et al. Characteristics and influencing factors of soil fungal community of typical vegetation types in Mount Huangshan, East China[J]. Mycosystema, 2021, 40(10): 2735-2751.]
doi: 10.13346/j.mycosystema.210279 |
|
[9] | 谷晓楠, 贺红士, 陶岩, 等. 长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子[J]. 生态学报, 2017, 37(24): 8374-8384. |
[Gu Xiaonan, He Hongshi, Tao Yan, et al. Soil microbial community structure, enzyme activities, and their influencing factors along different altitudes of Changbai Mountain[J]. Acta Ecologica Sinica, 2017, 37(24): 8374-8384.] | |
[10] | 梦梦, 刘慧芳, 张树苗, 等. 青海大通北川河源区自然保护区资源植物多样性研究[J]. 林业资源管理, 2013(4): 144-147. |
[Meng Meng, Liu Huifang, Zhang Shumiao, et al. Study on plant diversity in Qinghai Datongbeiheyuanqu Nature Reserve[J]. Forest Resources Management, 2013(4): 144-147.] | |
[11] | 陈永国, 刘维军, 荣月静, 等. 基于土地利用与植被覆盖度的大通北川河源区自然保护区生境质量评估[J]. 水土保持研究, 2020, 27(6): 332-337, 393. |
[Chen Yongguo, Liu Weijun, Rong Yuejing, et al. Assessment on habitat quality of Datong Beichuan River Source Area Nature Reserve based on land use and vegetation coverage[J]. Research on Soil and Water Conservation, 2020, 27(6): 332-337, 393.] | |
[12] | 向前胜, 张登山, 孙奎, 等. 高寒地区不同海拔梯度西北小檗生境土壤微生物群落结构及多样性分析[J]. 西北植物学报, 2021, 41(6): 1036-1050. |
[Xiang Qiansheng, Zhang Dengshan, Sun Kui, et al. Analysis of soil microbial community structure and diversity in Berberis vernae habitat at different altitudes in alpine region[J]. Acta Botanica Boreali-occidentalia Sinica, 2021, 41(6): 1036-1050.] | |
[13] | 万盼, 胡艳波, 张弓乔, 等. 甘肃小陇山油松与柴胡栽培土壤细菌群落特征[J]. 生态学报, 2018, 38(17): 6016-6024. |
[Wan Pan, Hu Yanbo, Zhang Gongqiao, et al. Soil bacterial communities under Pinus tabulaeformis Carr. and Bupleurum chinense plantations at Xiaolongshan Mountain of Gansu Province[J]. Acta Ecologica Sinica, 2018, 38(17): 6016-6024.] | |
[14] | 王诗慧, 常顺利, 李鑫, 等. 天山林区土壤真菌多样性及其群落结构[J]. 生态学报, 2021, 41(1): 124-134. |
[Wang Shihui, Chang Shunli, Li Xin, et al. Soil fungal diversity and community structure in the Tianshan Mountain region[J]. Acta Ecologica Sinica, 2021, 41(1): 124-134.] | |
[15] | Weng X H, Li J Y, Sui X, et al. Soil microbial functional diversity responses to different vegetation types in the Heilongjiang Zhongyangzhan Black-billed Capercaillie Nature Reserve[J]. Annals of Microbiology, 2021, 71(12): 1-11. |
[16] | 王露莹, 孙慧珍, 杨雪. 松花江下游滨岸带典型植被根际土壤细菌群落结构与功能多样性[J]. 环境科学, 2022, 43(4): 2182-2191. |
[Wang Luying, Sun Huizhen, Yang Xue. Structure and functional diversity of bacterial community in rhizosphere soil of typical vegetation in the riparian zone along the downstream of Songhua River[J]. Environmental Science, 2022, 43(4): 2182-2191.] | |
[17] |
Rousk J, Brookes P C, Bååth E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization[J]. Applied and Environmental Microbiology, 2009, 75(6): 1589-1596.
doi: 10.1128/AEM.02775-08 pmid: 19151179 |
[18] | 姜雪薇, 马大龙, 臧淑英, 等. 高通量测序分析大兴安岭典型森林土壤细菌和真菌群落特征[J]. 微生物学通报, 2021, 48(4): 1093-1105. |
[Jiang Xuewei, Ma Dalong, Zang Shuying, et al. Characteristics of soil bacterial and fungal community of typical forest in the Greater Khingan Mountains based on high-throughput sequencing[J]. Microbiology, 2021, 48(4): 1093-1105.] | |
[19] | 霍雅娜, 关晋宏, 刘学琴, 等. 不同混交度青海云杉细根与土壤微生物的互作关系[J]. 森林与环境学报, 2023, 43(6): 588-595. |
[Huo Yana, Guan Jinhong, Liu Xueqin, et al. Interaction between fine roots of Picea crassifolia and soil microorganisms under different mingling degree stands[J]. Journal of Forest and Environment, 2023, 43(6): 588-595.] | |
[20] | 黄艳, 丛日征, 张吉利, 等. 三江平原典型森林类型土壤微生物群落结构与影响因子[J]. 中南林业科技大学学报, 2023, 43(7): 129-140. |
[Huang Yan, Cong Rizheng, Zhang Jili, et al. Soil microbial community structure and influencing factors of typical forest types in Sanjiang plain[J]. Journal of Central South University of Forestry & Technology, 2023, 43(7): 129-140.] | |
[21] | 赵海英, 朱俊义, 刘雪莲, 等. 长白山白江河不同植被类型沼泽土壤细菌群落结构特征[J]. 东北林业大学学报, 2023, 51(10): 113-120. |
[Zhao Haiying, Zhu Junyi, Liu Xuelian, et al. Characteristics of soil bacterial communities in swamps under different vegetation types in Baijianghe of Changbai Mountains[J]. Journal of Northeast Forestry University, 2023, 51(10): 113-120.] | |
[22] | 霍建琳. 祁连山区几种常见树种的外生菌根真菌群落研究[D]. 兰州: 兰州大学, 2024. |
[Huo Jianlin. Communities of Ectomycorrhizal Fungi Associated with Several Common Tree Species in Qilian Mountains[D]. Lanzhou: Lanzhou University, 2024.] | |
[23] | 魏晓帅, 郭米山, 高广磊, 等. 呼伦贝尔沙地樟子松根内真菌群落结构与功能群特征[J]. 北京大学学报(自然科学版), 2020, 56(4): 710-720. |
[Wei Xiaoshuai, Guo Mishan, Gao Guanglei, et al. Community structure and functional groups of fungi in the roots associated with Pinus sylvestri var. mongolica in the Hulunbuir Sandy Land[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(4): 710-720.] | |
[24] | 王浩, 吴爱姣, 刘保兴, 等. 菌根真菌多样性与植物多样性的相互作用研究进展[J]. 微生物学通报, 2020, 47(11): 3918-3932. |
[Wang Hao, Wu Aijiao, Liu Baoxing, et al. Interactions between mycorrhizal fungal diversity and plant diversity: A review[J]. Microbiology, 2020, 47(11): 3918-3932.] | |
[25] | 曹红雨, 高广磊, 丁国栋, 等. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性[J]. 林业科学, 2019, 55(8): 118-127. |
[Cao Hongyu, Gao Guanglei, Ding Guodong, et al. Community structure and diversity of soil fungi in four habitats in Hulun Buir sandy land[J]. Scientia Silvae Sinicae, 2019, 55(8): 118-127.] | |
[26] | 徐建宇, 毛艳萍. 从典型硝化细菌到全程氨氧化微生物:发现及研究进展[J]. 微生物学通报, 2019, 46(4): 879-890. |
[Xu Jianyu, Mao Yanping. From canonical nitrite oxidizing bacteria to complete ammonia oxidizer: Discovery and advances[J]. Microbiology, 2019, 46(4): 879-890.] | |
[27] |
李丹丹, 李佳文, 高广磊, 等. 科尔沁沙地樟子松(Pinus sylvestris var. mongolia)人工林土壤真菌群落结构和功能特征[J]. 中国沙漠, 2023, 43(4): 241-251.
doi: 10.7522/j.issn.1000-694X.2023.00035 |
[Li Dandan, Li Jiawen, Gao Guanglei, et al. Soil fungal community structure and functional characteristics associated with Pinus sylvestris var. mongolica plantations in the Horqin Sandy Land[J]. Journal of Desert Research, 2023, 43(4): 241-251.]
doi: 10.7522/j.issn.1000-694X.2023.00035 |
|
[28] | Guo W J, Ding J X, Wang Q T, et al. Soil fertility controls ectomycorrhizal mycelial traits in alpine forests receiving nitrogen deposition[J]. Soil Biology and Biochemistry, 2021, 161(53): 108386. |
[29] | Peng Z, Johnson N C, Jansa J, et al. Mycorrhizal effects on crop yield and soil ecosystem functions in a long-term tillage and fertilization experiment[J]. New Phytologist, 2023, 116(122): 110721. |
[30] |
张泰劼, 张纯, 郭文磊, 等. 阔叶丰花草对华南丘陵果园土壤微生物群落结构的影响[J]. 中国农学通报, 2023, 39(17):26-36.
doi: 10.11924/j.issn.1000-6850.casb2022-0480 |
[Zhang Taijie, Zhang Chun, Guo Wenlei, et al. Effects of Borreria latifolia on microbial community structure characteristics in Hilly Orchards in South China[J]. Chinese Agricultural Science Bulletin, 2023, 39(17): 26-36.] | |
[31] | 李伊凡, 王俊伟, 陈永豪, 等. 西藏岗巴拉山土壤细菌多样性海拔分布格局及其驱动因子[J]. 生态学报, 2024, 44(2): 712-722. |
[Li Yifan, Wang Junwei, Chen Yonghao, et al. Elevation distribution pattern and driving factors of soil bacterial diversity on Mount Gangbala, Tibet, China[J]. Acta Ecologica Sinica, 2024, 44(2): 712-722.] | |
[32] | 张庚金, 魏宗强, 颜晓, 等. 酸化与富磷对农田土壤硅有效性的影响[J]. 土壤学报, 2024, 61(3): 813-823. |
[Zhang Gengjin, Wei Zongqiang, Yan Xiao, et al. The effects of acidification and phosphorus enrichment on the availability of silicon in farmland soils[J]. Acta Pedologica Sinica, 2024, 61(3): 813-823.] | |
[33] | 郭艳娥, 李芳, 李应德, 等. AM真菌促进植物吸收利用磷元素的机制[J]. 草业科学, 2016, 33(12): 2379-2390. |
[Guo Yan’e, Li Fang, Li Yingde, et al. Mechanisms of AM fungi in promoting plant uptake and utilization of phosphorus[J]. Pratacultural Science, 2016, 33(12): 2379-2390.] | |
[34] | Zhao W, Yin Y L, Li S X, et al. Soil microbial community varied with vegetation types on a small regional scale of the Qilian Mountains[J]. Sustainability, 2022, 14(13): 7910. |
[35] | 储成, 吴赵越, 黄欠如, 等. 有机质提升对酸性红壤氮循环功能基因及功能微生物的影响[J]. 环境科学, 2020, 41(05): 2468-2475. |
[Chu Cheng, Wu Zhaoyue, Huang Qianru, et al. Effect of organic matter promotion on nitrogen-cycling genes and functional microorganisms in acidic red soils[J]. Environmental Science, 2020, 41(5): 2468-2475.] | |
[36] |
庞丹波, 吴梦瑶, 赵娅茹, 等. 贺兰山东坡不同海拔土壤微生物群落特征及其影响因素[J]. 应用生态学报, 2023, 34(7): 1957-1967.
doi: 10.13287/j.1001-9332.202307.031 |
[Pang Danbo, Wu Mengyao, Zhao Yaru, et al. Soil microbial community characteristics and the influencing factors at different elevations on the eastern slope of Helan Mountain, Northwest China[J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1957-1967.]
doi: 10.13287/j.1001-9332.202307.031 |
|
[37] | 梁志英. 培肥措施对黄土高原旱地土壤团聚化作用和有机碳固持的影响及机制[D]. 杨凌: 西北农林科技大学, 2022. |
[Liang Zhiying. Effects of Different Organic Amendments on Soil Aggregation and Soil Organic Carbon Sequestration and Its Mechanism in Dryland Farming Areas of Loess Plateau[D]. Yangling: Northwest Agriculture & Forestry University, 2022.] |
[1] | 白丽丽, 王文颖, 德却拉姆, 刘艳方, 邓艳芳. 祁连山典型植被土壤碳、氮、磷含量及生态化学计量特征的垂直变化[J]. 干旱区研究, 2024, 41(3): 444-455. |
[2] | 张丽娟, 杜瀚, 贠丰泽, 马应辉, 张新强, 阿瓦古丽·图尔荪, 马正海. 天山乌鲁木齐河源1号冰川表层雪微生物多样性分析[J]. 干旱区研究, 2023, 40(4): 670-680. |
[3] | 牟红霞,刘秉儒,李子豪,李国旗,麻冬梅. 矿井水对荒漠草原土壤微生物群落结构及多样性的影响[J]. 干旱区研究, 2022, 39(5): 1618-1630. |
[4] | 徐接亮,张凤华,李变变,王家平,程志博. 施肥对油莎豆根际微生物群落特性的影响[J]. 干旱区研究, 2021, 38(6): 1741-1749. |
[5] | 贾晓燕,王晓江,牛建明,张文军,刘玉军. 赛罕乌拉国家级自然保护区不同植被类型水源涵养服务特征[J]. 干旱区研究, 2014, 31(3): 495-501. |
[6] | 刘虎俊, 刘世增, 李毅, 杨自辉, 李银科, 张莹花, 郭春秀, 刘淑娟. 石羊河中下游河岸带植被对地下水位变化的响应[J]. 干旱区研究, 2012, 29(2): 335-341. |
[7] | 曾雅娟,海鹰,陈济丁,王云,叶成银,庞明,陶双成,王萌萌. 中国-巴基斯坦喀喇昆仑公路沿线植被调查初报[J]. 干旱区研究, 2012, 29(1): 73-80. |
[8] | 尹林克, 南伟疆, 严成, 王蕾, 姜逢清, 昝勤. 乌鲁木齐城市植被类型及其特点[J]. 干旱区研究, 2011, 28(6): 1011-1019. |
[9] | 董莉丽, 郑粉莉. 黄土丘陵沟壑区植被类型对土壤质量的影响[J]. 干旱区研究, 2011, 28(4): 616-621. |
[10] | 石占飞, 王力, 王建国. 陕北神木矿区土壤颗粒体积分形特征及意义[J]. 干旱区研究, 2011, 28(3): 394-400. |
|