[1] |
崔东, 闫俊杰, 刘海军, 等. 伊犁河谷不同类型湿地土壤活性有机碳组分及其含量差异[J]. 生态学杂志, 2019, 38(7): 2087-2093.
|
|
[Cui Dong, Yan Junjie, Liu Haijun, et al. Soil labile organic carbon fractions and the differences of their concentrations in different types of wetlands in Yili valley[J]. Chinese Journal of Ecology, 2019, 38(7): 2087-2093.]
|
[2] |
张文鹏, 司晓林, 王文银, 等. 氮硅添加对高寒草甸生物量和多样性的影响——以青藏高原为例[J]. 草业科学, 2016, 33(1): 38-45.
|
|
[Zhang Wenpeng, Si Xiaolin, Wang Wenyin, et al. Effects of short-term nitrogen and silicon addition on above-ground biomass and biodiversity of alpine meadow of the Qinghai-Tibetan Plateau, China[J]. Pratacultural Science, 2016, 33(1): 38-45.]
|
[3] |
刘顺, 罗达, 刘千里, 等. 川西亚高山不同森林生态系统碳氮储量及其分配格局[J]. 生态学报, 2017, 37(4): 1074-1083.
|
|
[Liu Shun, Luo Da, Liu Qianli, et al. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan[J]. Acta Ecologica Sinica, 2017, 37(4): 1074-1083.]
|
[4] |
高建梅, 董丽媛, 胡古, 等. 哀牢山中山湿性常绿阔叶林土壤氮转化的海拔效应[J]. 生态学杂志, 2011, 30(10): 2149-2154.
|
|
[Gao Jianmei, Dong Liyuan, Hu Gu, et al. Altitudinal effect of soil nitrogen transformation in a montane evergreen broadleaved forest in Ailao Mountains of Southwest China[J]. Chinese Journal of Ecology, 2011, 30(10): 2149-2154.]
|
[5] |
张晶, 林先贵, 尹睿. 参与土壤氮素循环的微生物功能基因多样性研究进展[J]. 中国生态农业学报, 2009, 17(5): 1029-1034.
doi: 10.3724/SP.J.1011.2009.01029
|
|
[Zhang Jin, Lin Xiangui, Yin Rui. Advances in functional gene diversity of microorganism in relation to soil nitrogen cycling[J]. Chinese Journal of Eco-Agriculture, 2009, 17(5): 1029-1034.]
doi: 10.3724/SP.J.1011.2009.01029
|
[6] |
Watanabe M D B, Ortega E. Ecosystem services and biogeochemical cycles on a global scale: Valuation of water, carbon and nitrogen processes[J]. Environmental Science & Policy, 2011, 14(6): 594-604.
|
[7] |
IPCC. Climate Change 2014:Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment. Summary for Policymakers[R]. Cambridge: Cambridge University Press, 2014.
|
[8] |
丁莹莹, 邱德勋, 吴常雪, 等. 关中平原极端降水时空变化及其与大气环流的关系[J]. 干旱区研究, 2022, 39(1): 104-112.
|
|
[Ding Yingying, Qiu Dexun, Wu Changxue, et al. Spatial-temporal variations in extreme precipitation and their relationship with atmospheric circulation in the Guanzhong Plain[J]. Arid Zone Research, 2022, 39(1): 104-112.]
|
[9] |
Stocker T F, Qin D. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[C]// The Physical Science Basis. Computational Geometry: IPCC, 2013: 710-719.
|
[10] |
武丹丹, 井新, 林笠, 等. 青藏高原高寒草甸土壤无机氮对增温和降水改变的响应[J]. 北京大学学报(自然科学版), 2016, 52(5): 959-966.
|
|
[Wu Dandan, Jin Xin, Lin Li, et al. Responses of soil inorganic nitrogen to warming and altered precipitation in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(5): 959-966.]
|
[11] |
王岩, 刁华杰, 董宽虎, 等. 降水变化与氮添加对晋北盐碱化草地土壤净氮矿化的影响[J]. 应用生态学报, 2021, 32(7): 2389-2396.
doi: 10.13287/j.1001-9332.202107.009
|
|
[Wang Yan, Diao Huajie, Dong Kuanhu, et al. Effects of precipitation change and nitrogen addition on soil net N mineralization in a saline-alkaline grassland of Northern Shanxi Province, China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2389-2396.]
doi: 10.13287/j.1001-9332.202107.009
|
[12] |
Xiang S R, Doyle A, Holden P A, et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology and Biochemistry, 2008, 40(9): 2281-2289.
doi: 10.1016/j.soilbio.2008.05.004
|
[13] |
杨浩, 胡中民, 郭群, 等. 增雨和氮添加对内蒙古草原土壤氮矿化潜力的影响[J]. 自然资源学报, 2017, 32(12): 2034-2042.
|
|
[Yang Hao, Hu Zhongmin, Guo Qun, et al. Influences of precipitation increase and N addition on soil potential N mineralization in Inner Mongolia grassland[J]. Journal of Natural Resources, 2017, 32(12): 2034-2042.]
|
[14] |
曹瑜, 游庆龙, 马茜蓉. 青藏高原中东部夏季极端降水年代际变化特征[J]. 气象科学, 2019, 39(4): 437-445.
|
|
[Cao Yu, You Qinlong, Ma Qianrong. Interdecadal characteristics of the summer extreme precipitation in the central and eastern Tibetan Plateau[J]. Journal of the Meteorological Sciences, 2019, 39(4): 437-445.]
|
[15] |
吴江琪. 植被退化对尕海湿草甸土壤理化性质和酶活性的影响[D]. 兰州: 甘肃农业大学, 2021.
|
|
[Wu Jiangqi. Effects of Vegetation Degradation on Soil Physicochemical Properties and Enzyme Activities of Gahai Wet Meadow[D]. Lanzhou: Gansu Agricultural University, 2021.]
|
[16] |
徐国荣, 马维伟, 宋良翠, 等. 植被不同退化状态下尕海湿地土壤氮含量及酶活性特征[J]. 生态学报, 2020, 40(24): 8917-8927.
|
|
[Xu Guorong, Ma Weiwei, Song Liangcui, et al. Characteristics of soil nitrogen content and enzyme activity in Gahai Wetland under different vegetation degradation conditions[J]. Acta Ecologica Sinica, 2020, 40(24): 8917-8927.]
|
[17] |
Wu J Q, Wang H Y, Li G, et al. Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau[J]. Scientific Reports, 2020, 10: 21271.
doi: 10.1038/s41598-020-78182-9
|
[18] |
马瑞, 马维伟, 李广, 等. 尕海湿地不同植被退化阶段凋落物分解及其有机碳动态[J]. 水土保持研究, 2017, 24(6): 29-34.
|
|
[Ma Rui, Ma Weiwei, Li Guang, et al. Litter decomposition and dynamics of organic carbon in degraded vegetation of Gahai Wetland[J]. Research of Soil and Water Conservation, 2017, 24(6): 29-34.]
|
[19] |
马维伟, 孙文颖. 尕海湿地植被退化过程中有机碳及相关土壤酶活性变化特征[J]. 自然资源学报, 2020, 35(5): 1250-1260.
doi: 10.31497/zrzyxb.20200519
|
|
[Ma Weiwei, Sun Wenyin. Changes of organic carbon and related soil enzyme activities during vegetation degradation in Gahai Wetland[J]. Journal of Natural Resources, 2020, 35(5): 1250-1260.]
doi: 10.31497/zrzyxb.20200519
|
[20] |
Fan J, Sun W, Zhao Y, et al. Trend analyses of extreme precipitation events in the Yarlung Zangbo River Basin, China using a high resolution precipitation product[J]. Sustainability, 2018, 10(5), doi: 10.3390/su10051396.
doi: 10.3390/su10051396
|
[21] |
Li L, Yang S, Wang Z, et al. Evidence of warming and wetting climate over the Qinghai-Tibet Plateau[J]. Arctic Antarctic & Alpine Research, 2010, 42(4): 449-457.
|
[22] |
Saha U K, Sonon L, Biswas B K. A comparison of diffusion-conductimetric and distillation-titration methods in analyzing ammonium-and nitrate-nitrogen in the KCl-extracts of Georgia soils[J]. Communications in Soil Science and Plant Analysis, 2018, 49 (1): 63-75.
doi: 10.1080/00103624.2017.1421647
|
[23] |
胡艳玲, 韩士杰, 李雪峰, 等. 长白山原始林和次生林土壤有效氮含量对模拟氮沉降的响应[J]. 东北林业大学学报, 2009, 37(5): 36-38, 42.
|
|
[Hu Yanlin, Han Shijie, Li Xuefeng, et al. Responses of soil available nitrogen of natural forest and secondary forest to simulated N deposition in Changbai Mountain[J]. Journal of Northeast Forestry University, 2009, 37(5): 36-38, 42.]
|
[24] |
Edwards K A, McCulloch J, Kershaw G P, et al. Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring[J]. Soil Biology & Biochemistry, 2006, 38(9): 2843-2851.
|
[25] |
Cregger M A, McDowell N G, Pangle R E, et al. The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem[J]. Functional Ecology, 2015, 28(6): 1534-1544.
doi: 10.1111/1365-2435.12282
|
[26] |
Puri G, Ashman M R. Relationship between soil microbial biomass and gross N mineralization[J]. Soil Biology and Biochemistry, 1998, 30(2): 251-256.
doi: 10.1016/S0038-0717(97)00117-X
|
[27] |
宋良翠, 马维伟, 李广, 等. 水分对尕海湿地退化演替土壤氮矿化的影响[J]. 干旱区研究, 2022, 39(1): 165-175.
|
|
[Song Liangcui, Ma Weiwei, Li Guang, et al. Effect of water on nitrogen mineralization in degraded succession of Gahai Wetland[J]. Arid Zone Research, 2022, 39(1): 165-175.]
|
[28] |
Zhou X Y, Chen L, Li Y, et al. Abiotic processes dominate soil organic matter mineralization: Investigating the regulatory gate hypothesis by inoculating a previously fumigated soil within creasing fresh soil inocula[J]. Geoderma, 2020, 373: 114400
doi: 10.1016/j.geoderma.2020.114400
|
[29] |
Liu Y T, Zhao S Q, Zhi Q, et al. Image grey value analysis for estimating the effect of microorganism inoculants on straws decomposition[J]. Computers and Electronics in Agriculture, 2016, 128: 120-126.
doi: 10.1016/j.compag.2016.08.023
|
[30] |
马芬, 马红亮, 邱泓, 等. 水分状况与不同形态氮添加对亚热带森林土壤氮素净转化速率及N2O排放的影响[J]. 应用生态学报, 2015, 26(2): 379-387.
pmid: 26094450
|
|
[Ma Fen, Ma Hongliang, Qiu Hong, et al. Effects of water levels and the additions of different nitrogen forms on soil net nitrogen transformation rate and N2O emission in subtropical forest soils[J]. Chinese Journal of Applied Ecology, 2015, 26(2): 379-387.]
pmid: 26094450
|
[31] |
Gao J M, Dong L Y, Hu G, et al. Altitudinal effect of soil nitrogen transformation in a montane evergreen broadleaved forest in Ailao Mountains of Southwest China[J]. Chinese Journal of Ecology, 2011, 30(10): 2149-2154.
|
[32] |
Chapin F S, Vitousek P M, Van Cleve K. The nature of nutrient limitation in plant communities[J]. American Naturalist, 1986, 127(1): 48-58.
doi: 10.1086/284466
|
[33] |
傅民杰, 王传宽, 王颖, 等. 四种温带森林土壤氮矿化与硝化时空格局[J]. 生态学报, 2009, 29(7): 3747-3758.
|
|
[Fu Minjie, Wang Chuankuan, Wang Ying, et al. Temporal and spatial patterns of soil nitrogen mineralization and nitrification in four temperate forests[J]. Acta Ecologica Sinica, 2009, 29(7): 3747-3758.]
|
[34] |
王常慧, 邢雪荣, 韩兴国. 温度和湿度对我国内蒙古羊草草原土壤净氮矿化的影响[J]. 生态学报, 2004, 24(11): 2472-2476.
|
|
[Wang Changhui, Xing Xuerong, Han Xingguo. The effects of temperature and moisture on the soil net nitrogen mineralization in an Aneulolepidium chinensis grassland, Inner Mongolia, China[J]. Acta Ecologica Sinica, 2004, 24(11): 2472-2476.]
|
[35] |
Chapin III F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology[R]. Berlin: Springer, 2011.
|
[36] |
Cregger M A, McDowell N G, Pangle R E, et al. The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem[J]. Functional Ecology, 2015, 28(6): 1534-1544.
doi: 10.1111/1365-2435.12282
|
[37] |
李国荣, 李希来, 陈文婷, 等. 降雨侵蚀对退化草地土壤养分含量的影响[J]. 水土保持研究, 2018, 25(2): 40-45.
|
|
[Li Guorong, Li Xilai, Chen Wenting, et al. Influences of rain erosion on soil nutrient contents of the degraded grassland[J]. Research of Soil and Water Conservation, 2018, 25(2): 40-45.]
|
[38] |
朱义族, 李雅颖, 韩继刚, 等. 水分条件变化对土壤微生物的影响及其响应机制研究进展[J]. 应用生态学报, 2019, 30(12): 4323-4332.
doi: 10.13287/j.1001-9332.201912.031
|
|
[Zhu Yizu, Li Yaying, Han Jigang, et al. Effects of changes in water status on soil microbes and their response mechanism: A review[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4323-4332.]
doi: 10.13287/j.1001-9332.201912.031
|
[39] |
Pezeshki S R. Wetland plant responses to soil flooding[J]. Environmental and Experimental Botany, 2001, 46(3): 299-312.
doi: 10.1016/S0098-8472(01)00107-1
|
[40] |
Jackson M B, Ram P C. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence[J]. Annals of Botany, 2003, 91(2): 227-241.
doi: 10.1093/aob/mcf242
|
[41] |
董云霞. 纳帕海湿地区土壤碳氮要素分异特征研究[D]. 昆明: 云南大学, 2011.
|
|
[Dong Yunxia. Study on Variation of Carbon and Nitrogen Components of Soil in Napahai Wetland Reserve[D]. Kunming: Yunnan University, 2011.]
|
[42] |
马维伟, 王辉, 李广, 等. 甘南尕海湿地退化过程中植被生物量变化及其季节动态[J]. 生态学报, 2017, 37(15): 5091-5101.
|
|
[Ma Weiwei, Wang Hui, Li Guang, et al. Changes in plant biomass and its seasonal dynamics during degradation succession in the Gahai wetland[J]. Acta Ecologica Sinica, 2017, 37(15): 5091-5101.]
|