干旱区研究 ›› 2023, Vol. 40 ›› Issue (8): 1203-1214.doi: 10.13866/j.azr.2023.08.01

• 天气与气候 • 上一篇    下一篇

宁夏六盘山区地面雨滴谱特征统计分析

马思敏1,2(),舒志亮1,2(),常倬林1,2,周楠1,2,刘士军3   

  1. 1.中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室,宁夏 银川 750002
    2.宁夏回族自治区气象灾害防御技术中心,宁夏 银川 750002
    3.乌海市气象局,内蒙古 乌海 016000
  • 收稿日期:2023-01-18 修回日期:2023-05-11 出版日期:2023-08-15 发布日期:2023-08-24
  • 通讯作者: 舒志亮. E-mail: 8633204@163.com
  • 作者简介:马思敏(1991-),女,工程师,研究方向为大气物理. E-mail: msm053@163.com
  • 基金资助:
    宁夏回族自治区重点研发计划(2022BEG02010);国家自然科学基金联合基金项目(U22A202286);第二次青藏高原综合科学考察研究项目(2019QZKK0104);中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室开放研究项目(CAMF-202207)

Statistics and analysis of surface raindrop spectrum characteristics in Liupan Mountain area of Ningxia

MA Simin1,2(),SHU Zhiliang1,2(),CHANG Zhuolin1,2,ZHOU Nan1,2,LIU Shijun3   

  1. 1. Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions, CMA, Yinchuan 750002, Ningxia, China
    2. Key Laboratory of Meteorological Disaster Preventing and Reducing of Ningxia, Yinchuan 750002, Ningxia, China
    3. Wuhai Meteorological Bureau, Wuhai 016000, Inner Mongolia, China
  • Received:2023-01-18 Revised:2023-05-11 Online:2023-08-15 Published:2023-08-24

摘要:

利用2020—2021年六盘山区58次降雨过程不同站点的雨滴谱数据,对层状云、对流云、积层混合云三类降雨的微物理参量、雨滴谱平均特征,以及Gamma分布参数等进行了分析。结果表明:(1) 同一站点的各微物理参量以及特征直径均值表现为:对流云>积层混合云>层状云;在层状云和积层混合云中,平均直径Dave、众数直径Dmode表现为山腰大于山顶和山底,随着东、西坡两侧海拔高度的升高,其最大直径Dmax、质量加权平均直径Dm、雨强R、雷达反射率Z、液态含水量Q逐渐增大;(2) 层状云和积层混合云小雨滴对雨强和数浓度的贡献均为最大,对流云小雨滴对数浓度贡献最大,而中等雨滴对雨强的贡献最大;(3) Gamma分布的参数N0(阶距参数)、 μ(形状参数)、λ(斜率参数)随着海拔高度的升高而减小,μ-λ拟合曲线的斜率与降水类型密切相关;(4) 山顶站点雨滴粒子数浓度Nw较山脚站点有所减小,而平均尺度Dm增大;(5) 西北气流型的雨滴谱各特征直径参量及各微物理参量大于东高西低型和平直气流型。

关键词: 六盘山, 雨滴谱, 微物理特征, Gamma分布

Abstract:

The microphysical parameters, average characteristics of raindrop spectra, and gamma distribution parameters of three types of rainfall (stratiform, cumulonimbus, and stratocumulus) were analyzed using raindrop spectrum data from different stations of 58 rainfall processes in the Liupan Mountains from 2020 to 2021. The results are as follows: (1) The mean values for all microphysical parameters at each station were higher for cumulonimbus rainfall compared to stratocumulus and stratiform rainfall. In stratiform and stratocumulus rainfall, the mean diameter (Dave) and mode diameter (Dmode) were smaller at the top and bottom of the mountain and greater on the mountainside. Conversely, the maximum diameter (Dmax), mass-weighted mean diameter (Dmode), rain rate (R), radar reflectivity (Z), and liquid water content (Q) increased with elevation on the east and west slopes. (2) The contributions of small raindrops to rain rate (R) and number concentration (N) were higher in stratiform and stratocumulus rainfall than in cumulonimbus rainfall. However, the contributions of small and medium-sized raindrops to N and R, respectively, were higher in cumulonimbus rainfall than in stratiform and stratocumulus rainfall. (3) The N0, μ, and λ parameters of gamma distribution decreased with an increase in altitude. The slope of the μ-λ fitting curve was closely related to the type of rainfall. (4) Compared with the foot of the mountain sites, the peak site exhibited a decrease in raindrop number concentration (Nw) and an increase in mean scale (Dm). (5) The characteristic diameter and microphysical parameters varied under different circulation situations.

Key words: Liupan Mountains, raindrop spectrum, microphysical parameters, Gamma distribution