Different diurnal effects of floating dust on the structures in the atmospheric boundary layer over desert areas
Received date: 2021-10-13
Revised date: 2022-01-03
Online published: 2022-09-26
Based on data from four-times-daily intensive sounding and ground meteorological observations in the hinterland of the Taklamakan Desert in July 2016, this paper compares the structures in the atmospheric boundary layer and differences in surface radiation budget on sunny days and days with high amounts of floating dust (“floating dust days”) to reveal the diurnal change in the effect of floating dust aerosols on the structure of the atmospheric boundary layer and its underlying mechanism. The results show that the height of the stable boundary layer at night on a sunny day and a floating dust day is 270 m and 360 m, respectively. The stable boundary layer inversion intensity on a sunny day reaches 3.1 K·(100m)-1, which is stronger than 1.6 K·(100m)-1 on a floating dust day. The convective boundary layer height is close to 3600 m on a sunny day and only 2700 m on a floating dust day. The downward long-wave radiation of floating dust aerosols at night weakens the radiative cooling of the surface, raises the height of stable boundary layer, and weakens its stability. In the daytime, the strong solar short-wave net radiation heats the desert surface, and its strong sensible heat creates an ultrahigh convective atmospheric boundary layer. Floating dust aerosol significantly reduces the surface short-wave radiation and sensible heating and reduces the height of the convective boundary layer during the day. The unique radiation effect of floating dust aerosols in the Tarim Basin has opposite influences on the structure of the atmospheric boundary layer during the day and night.
ZHU Congzhen,ZHAO Tianliang,MENG Lu,YANG Xinghua,HE Qing,Ali MAMTIMIN,YANG Jie,ZHU Yan,WU Zhaoye . Different diurnal effects of floating dust on the structures in the atmospheric boundary layer over desert areas[J]. Arid Zone Research, 2022 , 39(4) : 1017 -1026 . DOI: 10.13866/j.azr.2022.04.03
[1] | Lenschow D H. Probing the Atmospheric Boundary Layer[M]. Boston, MA: American meteorological Society, 1986. |
[2] | Roland B S. An Introduction to Boundary Layer Meteorology[M]. Dordrecht: Springer, 1988. |
[3] | Alexander B, Branko G. Atmospheric Boundary Layers[M]. New York: Springer, 2007. |
[4] | 张强, 王胜, 张杰, 等. 干旱区陆面过程和大气边界层研究进展[J]. 地球科学进展, 2009, 24(11): 1185-1194. |
[4] | [Zhang Qiang, Wang Sheng, Zhang Jie, et al. The progresses on land surface processes and atmospheric boundary layer in arid regions[J]. Advances in Earth Science, 2009, 24(11): 1185-1194.] |
[5] | 杜一博, 张强, 王凯嘉, 等. 西北干旱区夏季晴天、阴天边界层结构及其陆面过程对比分析[J]. 高原气象, 2018, 37(1): 148-157. |
[5] | [Du Yibo, Zhang Qiang, Wang Kaijia, et al. The Northwest arid areas in summer sunny day, cloudy day boundary layer structure and land surface process comparison analysis[J]. Plateau Meteorology, 2018, 37(1): 148-157.] |
[6] | 赵采玲, 吕世华, 韩博, 等. 夏季巴丹吉林沙漠残余层与深厚对流边界层的关系研究[J]. 高原气象, 2016, 35(4): 1004-1014. |
[6] | [Zhao Cailing, Lyu Shihua, Han Bo, et al. Relationship between the convective boundary laye and residual layer and over Badain Jaran Desert in summer[J]. Plateau Meteorology, 2016, 35(4): 1004-1014.] |
[7] | 李建刚, 奥银焕, 李照国, 等. 巴丹吉林沙漠夏季大气边界层结构[J]. 中国沙漠, 2014, 34(2): 488-497. |
[7] | [Li Jiangang, Ao Yinhuan, Li Zhaoguo, et al. Characteristics of atmospheric boundary layer over the Badain Jaran Desert in summer[J]. Journal of Desert Research, 2014, 34(2): 488-497.] |
[8] | 张建涛, 何清, 王敏仲, 等. 塔克拉玛干沙漠腹地夜间稳定边界层观测个例分析[J]. 高原气象, 2018, 37(3): 826-836. |
[8] | [Zhang Jiantao, He Qing, Wang Minzhong, et al. A case analysis of nighttime stable boundary layer observation in the hinterland of Taklimakan Desert[J]. Plateau Meteorology, 2018, 37(3): 826-836.] |
[9] | Messager C, Parker D J, Reitebuch O, et al. Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: Observations and analyses from the research flights of 14 and 17 July 2006[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(S1): 107-104. |
[10] | Garcia-carreras L, Parker D J, Marsham J H, et al. The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer[J]. Journal of the Atmospheric Sciences, 2015, 72(2): 693-713. |
[11] | Ana L Q, Irina N S, Owen B T. Influence of the aerosol vertical distribution on the retrievals of aerosol optical depth from satellite radiance measurements[J]. Geophysical Research Letters, 2000, 27(21): 3457-3460. |
[12] | Yu H B, Liu S C, Dickinson R E. Radiative effects of aerosols on the evolution of the atmospheric boundary layer[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D12): AAC 3-1-AAC 3-14. |
[13] | Florent M, Véronique P, Marc M, et al. Simulation of aerosol radiative effects over West Africa during DABEX and AMMA SOP-0[J]. John Wiley & Sons, Ltd, 2011, 116(D8): 1-22. |
[14] | 曹蔚, 赵天良, 徐祥德, 等. 基于加密探空观测的成都市一次重霾污染过程中大气边界层气溶胶垂直结构分析[J]. 地球化学, 2020, 49(3): 344-352. |
[14] | [Cao Wei, Zhao Tianliang, Xu Xiangde, et al. Observation analysis of aerosol vertical structures in boundary layer during a heavy haze event in Chengdu based on intensive sounding measurements[J]. Geochimica, 2020, 49(3): 344-352.] |
[15] | Wang Minzhong, Wei Wenshou, He Qing, et al. Summer atmospheric boundary layer structure in the hinterland of Taklimakan Desert, China[J]. Journal of Arid Land, 2016, 8(6): 846-860. |
[16] | 何清, 赵景峰. 塔里木盆地浮尘时空分布及对环境影响的研究[J]. 中国沙漠, 1997, 17(2): 15-16, 18-22. |
[16] | [He Qing, Zhao Jingfeng. The studies on the distribution of floating dusts in the tarim basin and its effects on environment[J]. Journal of Desert Research, 1997, 17(2): 15-16, 18-22.] |
[17] | Meng Lu, Yang Xinghua, Zhao Tianliang, et al. Modeling study on three-dimensional distribution of dust aerosols during a dust storm over the Tarim Basin, Northwest China[J]. Atmospheric Research, 2019, 218: 285-295. |
[18] | 王森, 王雪姣, 陈东东, 等. 1961—2017年南疆地区沙尘天气的时空变化特征及影响因素分析[J]. 干旱区资源与环境, 2019, 33(9): 81-86. |
[18] | [Wang Sen, Wang Xuejiao, Chen Dongdong, et al. The spatial and temporal variation characteristics and influencing factors of dust weather in the southern Xinjiang from 1961 to 2017[J]. Journal of Arid Land Resources and Environment, 2019, 33(9): 81-86.] |
[19] | 张强, 王胜. 西北干旱区夏季大气边界层结构及其陆面过程特征[J]. 气象学报, 2008, 66(4): 599-608. |
[19] | [Zhang Qiang, Wang Sheng. A study on atmospheric boundary layer structure on a clear day in the arid region in Northwest China[J]. Acta Meteorology Sinica, 2008, 66(4): 599-608.] |
[20] | 李岩瑛, 张强, 张爱萍, 等. 干旱半干旱区边界层变化特征及其影响因子分析[J]. 高原气象, 2016, 35(2): 385-396. |
[20] | [Li Yanying, Zhang Qiang, Zhang Aiping, et al. Analysis on atmosphere boundary layer variation characteristics and their impact factors in arid region and semi-arid region over Northwest China[J]. Plateau Meteorology, 2016, 35(2): 385-396.] |
[21] | Petra S, Frank B, Svenerik G, et al. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmospheric Environment, 2000, 34(7): 1001-1027. |
[22] | 乔娟. 西北干旱区大气边界层时空变化特征及形成机理研究[D]. 北京: 中国气象科学研究院, 2009. |
[22] | [Qiao Juan. The Temporal and Spatial Characteristics of Atmospheric Boundary Layer and Its Formation Mechanism over Arid Region of Northwest China[D]. Beijing: Chinese Academy of Meteorological Sciences, 2009.] |
[23] | 李岩瑛, 张强, 陈英, 等. 中国西北干旱区沙尘暴源地风沙大气边界层特征[J]. 中国沙漠, 2014, 34(1): 206-214. |
[23] | [Li Yanying, Zhang Qiang, Chen Ying, et al. Vertical structure of atmosphere boundary layer during wind-sandstorm process over sandstorm source in arid area of Northwest China[J]. Journal of Desert Research, 2015, 34(1): 206-214.] |
[24] | 谭子渊. 中国西北干旱半干旱区边界层高度特征及其对沙尘天气影响的数值模拟研究[D]. 兰州: 兰州大学, 2019. |
[24] | [Tan Ziyuan. Numerical Simulation of Boundary Layer Height and Its Effect on Dust Weather in Arid and Semi-arid Regions of Northwest China[D]. Lanzhou: Lanzhou University, 2019.] |
[25] | Wei W, Wu B G, Ye X X, et al. Characteristics and mechanisms of low-level jets in the Yangtze River Delta of China[J]. Boundary-Layer Meteorology, 2013, 149(3): 403-424. |
[26] | 张建涛, 王敏仲, 何清, 等. 塔克拉玛干沙漠腹地夏季夜间低空急流变化特征[J]. 中国沙漠, 2020, 40(5): 89-100. |
[26] | [Zhang Jiantao, Wang Minzhong, He Qing, et al. Variation characteristics of nocturnal low-level jet in summer over the hinterland of Taklimakan Desert[J]. Journal of Desert Research, 2020, 40(5): 89-100.] |
[27] | Wang Y, Klipp C L, Garvey D M, et al. Nocturnal low-level-jet-dominated atmospheric boundary layer observed by a Doppler lidar over Oklahoma City during JU2003[J]. Journal of Applied Meteorology and Climatology, 2007, 46(12): 2098-2109. |
[28] | 郭萍萍, 杨建才, 殷雪莲, 等. 甘肃省春季一次连续浮尘天气过程分析[J]. 干旱气象, 2015, 33(2): 303-309. |
[28] | [Guo Pingping, Yang Jiancai, Yin Xuelian, et al. Analysis of a continuous floating dust weather in Gansu Province in spring[J]. Journal of Arid meteorology, 2015, 33(2): 303-309.] |
[29] | 徐安伦, 董保举, 刘劲松, 等. 洱海湖滨大气边界层结构及特征分析[J]. 高原气象, 2010, 29(3): 637-644. |
[29] | [Xu Anlun, Dong Baoju, Liu Jinsong, et al. Structure and characteristic of the atmospheric boundary layer in Erhai lakeside region of Dali[J]. Plateau Meteorology, 2010, 29(3): 637-644.] |
[30] | Zhang Wanchun, Guo Jianping, Miao Yucong, et al. On the summertime planetary boundary layer with different thermodynamic stability in China[J]. Journal of Climate, 2018, 31(4): 1451-1465. |
[31] | Barbaro E, Arellano J V, Ouwersloot H G, et al. Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(10): 5845-5863. |
[32] | 赵伟, 刘红年, 吴涧. 中国春季沙尘气溶胶的辐射效应及对气候影响的研究[J]. 南京大学学报(自然科学版), 2008, 44(6): 598-607. |
[32] | [Zhao Wei, Liu Hongnian, Wu Jian. Radiative and climate effects of dust aerosol in springs over China[J]. Journal of Nanjing University(Natural Sciences Edition), 2008, 44(6): 598-607.] |
[33] | 张强, 张杰, 乔娟, 等. 我国干旱区深厚大气边界层与陆面热力过程的关系研究[J]. 中国科学: 地球科学, 2011, 41(9): 1365-1374. |
[33] | [Zhang Qiang, Zhang Jie, Qiao Juan, et al. Relationship of atmospheric boundary layer depth with thermodynamic process at the land surface in arid areas of China[J]. Scientia Sinica, 2011, 41(9): 1365-1374.] |
[34] | Lou Mengyun, Guo Jianping, Wang Lingling, et al. On the relationship between aerosol and boundary layer height in summer in China under different thermodynamic conditions[J]. Earth and Space Science, 2019, 6(5): 887-901. |
[35] | Hu Jun, Zhao Tianlian, Liu Jane, et al. Nocturnal surface radiation cooling modulated by cloud cover change reinforces PM2.5 accumulation: Observational study of heavy air pollution in the Sichuan Basin, Southwest China[J]. Science of the Total Environment, 2021, 794: 148624. |
/
〈 | 〉 |