Compensation effect of nitrogen fertilizer post-shift on water-deficient cotton yield at different stages

Expand
  • 1. Agronomy College of Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2. Cotton Engineering Research Center of Ministry of Education, Urumqi 830052, Xinjiang, China

Received date: 2021-11-16

  Revised date: 2022-02-12

  Online published: 2022-05-30

Abstract

The flowering and boll stages are the most critical periods for the formation of cotton. To explore the compensation effect of nitrogen fertilizer backward shift on the yield of water-deficient cotton at the flowering and boll stages, Xinluzao No. 45 was used as the test material and a split-plot test design was adopted. The drip irrigation amount in two flowering and boll stages was determined as follows: a conventional irrigation amount of 2410 m3·hm-2 (W1) was the control and the deficit irrigation amount was 1668 m3·hm-2 (W2). N1 (flowering period fertilizer: boll period fertilizer 3:3), N2 (flowering period fertilizer: boll period fertilizer 2:4) and N3 (flowering period fertilizer: boll period fertilizer 4:2) was explored. Results showed that under the same nitrogen fertilizer conditions, the leaf area index (LAI) and net photosynthetic rate (Pn) of the water deficit were significantly lower than those of the normal irrigation treatment; was prolonged and the accumulation and proportion of dry matter in reproductive organs decreased significantly; the number and weight of bolls per plant decreased by an average of 11.7% and 45.6%, respectively, compared with normal irrigation; and the yield of seed cotton decreased by an average of 17.3%. The water consumption and partial productivity of nitrogen fertilizer decreased by 35.49% and 15.97% on average, respectively, and water use efficiency increased by an average of 16.77%. Compared with normal irrigation and under a water deficit condition at the flowering and boll stages, the LAI and Pn of cotton treated with nitrogen fertilizer (N2) increased compared with that of N1 and N3 and the expression was N2 > N1 > N3. The dry matter accumulation, Δt, and Vm performed best under fertilization, GT was the most coordinated, and the transfer rate from vegetative growth to reproductive growth of cotton was the highest at 68.25%. The number of bolls per plant and weight of single bolls increased by 10.40%, 16.02%, 8.41%, and 11.61%, respectively, and the yield of seed cotton increased by 7.32% and 13.88%, respectively. Water consumption, water use efficiency, and partial nitrogen fertilizer productivity were as follows: N2 > N1 > N3. In summary, a backward shift in nitrogen fertilizer can increase the LAI and Pn of cotton in the flowering stage, slow down the decline of LAI and Pn in the late boll stage, increase dry matter accumulation in the aerial part and increase the proportion of reproductive organs, and regulate the yield and its components to reduce the impact of water stress.

Cite this article

DAI Jianmin,HE Qingyu,XIE Ling,DOU Qiaoqiao,ZHANG Jusong . Compensation effect of nitrogen fertilizer post-shift on water-deficient cotton yield at different stages[J]. Arid Zone Research, 2022 , 39(3) : 986 -995 . DOI: 10.13866/j.azr.2022.03.32

References

[1] 丁红, 徐扬, 张冠初, 等. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[1] [ Ding Hong, Xu Yang, Zhang Guanchu, et al. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut[J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. ]
[2] 张静鸽, 田福平, 苗海涛, 等. 水分胁迫及复水过程4种牧草形态及其生理特征表达[J]. 干旱区研究, 2020, 37(1): 193-201.
[2] [ Zhang Jingge, Tian Fuping, Miao Haitao, et al. Expressions of morphological and physiological features of 4 forage species under water stress and re-watering process[J]. Arid Zone Research, 2020, 37(1): 193-201. ]
[3] 刘昭伟, 张盼, 王瑞, 等. 花铃期土壤持续干旱对棉铃对位叶气体交换参数和叶绿素荧光特性的影响[J]. 应用生态学报, 2014, 25(12): 3533-3539.
[3] [ Liu Zhaowei, Zhang Pan, Wang Rui, et al. Effects of soil progressive drought during the flowering and bollTimes New Romanforming stage on gas exchange parameters and chlorophyll fluorescence characteristics of the subtending leaf to cotton boll[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3533-3539. ]
[4] 马有绚, 张武, 张立祯. 近30年我国棉花需水特征[J]. 应用生态学报, 2016, 27(5): 1541-1552.
[4] [ Ma Youxuan, Zhang Wu, Zhang Lizhen. Cotton water requirement character during recent 30 years in China[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1541-1552. ]
[5] Dinh H T, Kaewpradit W, Jogloy S, et al. Nutrient uptake of peanut genotypes with different levels of drought tolerance under midseason drought[J]. Turkish Journal of Agriculture & Forestry, 2014, 38: 495-505.
[6] 何佩云, 张余, 周良, 等. 干旱胁迫及氮肥调控对苦荞植株形态、生理特性及产量的影响[J]. 应用与环境生物学报, 2022, 28(1): 128-134.
[6] [ He Peiyun, Zhang Yu, Zhou Liang, et al. Effects of drought stress and nitrogen fertilizer regulation on morphology, physiological characteristics and yield of Fagopyrum tataricum[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(1): 128-134. ]
[7] 石洪亮, 张巨松, 严青青, 等. 氮肥对非充分灌溉下棉花产量及品质的补偿作用[J]. 植物营养与肥料学报, 2018, 24(1): 134-145.
[7] [ Shi Hongliang, Zhang Jusong, Yan Qingqing, et al. Compensation effects of nitrogen fertilizer on yield and quality of cottonunder insufficient irrigation[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 134-145. ]
[8] 苏继霞, 王开勇, 费聪, 等. 氮肥运筹对干旱区滴灌甜菜氮素利用及产量的影响[J]. 干旱地区农业研究, 2018, 36(1): 72-75.
[8] [ Su Jixia, Wang Kaiyong, Fei Cong, et al. Effects of nitrogen management on nitrogen use efficiency and yield of sugar beet under drip irrigation in arid regions[J]. Agricultural Research in the Arid Areas, 2018, 36(1): 72-75. ]
[9] 陈斐, 闫霜, 王鹤龄, 等. 不同水分胁迫下的春小麦叶片气体交换参数和水分利用效率研究[J]. 干旱区研究, 2021, 38(3): 821-832.
[9] [ Chen Fei, Yan Shuang, Wang Heling, et al. Study on gas exchange parameters and water use efficiency of spring wheat leaves under different levels of water stress[J]. Arid Zone Research, 2021, 38(3): 821-832. ]
[10] 侯秀玲, 张炎, 王晓静, 等. 新疆超高密度棉田氮肥运筹对产量和氮肥利用的影响[J]. 棉花学报, 2006, 18(5): 273-278.
[10] [ Hou Xiuling, Zhang Yan, Wang Xiaojing, et al. Effect of different nitrogen fertilization on yield and nitrogen using of super high-density cotton system[J]. Journal of Cotton, 2006, 18(5): 273-278. ]
[11] Chen Y, Dong H. Mechanisms and regulation of senescence and maturity performance in cotton[J]. Field Crops Research, 2016, 189: 1-9.
[12] 刘素华, 彭延, 彭小峰, 等. 调亏灌溉与合理密植对旱区棉花生长发育及产量与品质的影响[J]. 棉花学报, 2016, 28(2): 184-188.
[12] [ Liu Suhua, Peng Yan, Peng Xiaofeng, et al. Effects of regulated deficit irrigation and plant density on plant growth and yield and fiber quality of cotton in dry land area[J]. Cotton Science, 2016, 28(2): 184-188. ]
[13] Zhan D, Zhang C, Yang Y, et al. Water deficit alters cotton canopy structure and increases photosynthesis in the mid-canopy layer[J]. Agronomy Journal, 2015, 107(5): 1947-1957.
[14] 罗振, 辛承松, 李维江, 等. 部分根区灌溉与合理密植对旱区棉花产量和水分生产率的影响[J]. 应用生态学报, 2019, 30(9): 3137-3146.
[14] [ Luo Zhen, Xin Chengsong, Li Weijiang, et al. Effects of partial root-zone irrigation and rational close planting on yield and water productivity of cotton in arid area[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 3137-3146. ]
[15] 姚青青, 孙绘健, 罗静, 等. 减施氮肥运筹对棉花冠层光合有效辐射及产量的影响[J]. 新疆农业科学, 2020, 57(8): 1404-1410.
[15] [ Yao Qingqing, Sun Huijian, Luo Jing, et al. Effects of nitrogen fertilizer reduction regulation on cotton canopy photosynthetic effective radiation and yield[J]. Xinjiang Agricultural Sciences, 2020, 57(8): 1404-1410. ]
[16] 陈求柱, 王志琴, 图尔汗, 等. 氮肥运筹对棉花干物质累积及产量的影响[J]. 湖北农业科学, 2013, 52(22): 5437-5442.
[16] [ Chen Qiuzhu, Wang Zhiqin, Tu Erhan, et al. Effects of nitrogen management on dry matter accumulation and yield of cotton[J]. Hubei Agricultural Sciences, 2013, 52(22): 5437-5442. ]
[17] 邹小云, 刘宝林, 宋来强, 等. 施氮量与花期水分胁迫对不同氮效率油菜产量性能及氮肥利用效率的影响[J]. 华北农学报, 2015, 30(2): 220-226.
[17] [ Zou Xiaoyun, Liu Baolin, Song Laiqiang, et al. Effects of nitrogen application and water stress at flowering stage on yield performance parameters and nitrogen use efficiency in rapeseed with different nitrogen use efficiency[J]. Journal of North China Agriculture, 2015, 30(2): 220-226. ]
[18] 孙一梅, 田青, 吕朋, 等. 极端干旱与氮添加对半干旱沙质草地物种多样性、叶性状和生产力的影响[J]. 干旱区研究, 2020, 37(6): 1569-1579.
[18] [ Sun Yimei, Tian Qing, Lyu Peng, et al. Effects of extreme drought and nitrogen addition on species diversity, leaf trait, and productivity in a semiarid sandy grassland[J]. Arid Zone Research, 2020, 37(6): 1569-1579. ]
[19] 祁有玲, 张富仓, 李开峰. 水分亏缺和施氮对冬小麦生长及氮素吸收的影响[J]. 应用生态学报, 2009, 20(10): 2399-2405.
[19] [ Qi Youling, Zhang Fucang, Li Kaifeng. Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake[J]. Chinese Journal of Applied Ecology, 2009, 20(10): 2399-2405. ]
[20] 黄慧娴, 沈天花, 钟蕾, 等. 施氮对干旱条件下晚稻产量与生理的影响[J]. 华北农学报, 2021, 36(3): 150-158.
[20] [ Huang Huixian, Shen Tianhua, Zhong Lei, et al. Effects of nitrogen application on yield and physiology of late rice under drought condition[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(3): 150-158. ]
[21] 何佩云, 龙梦千, 冯洁, 等. 苦荞不同施氮量对干旱胁迫的响应[J]. 福建农业学报, 2021, 36(8): 892-898.
[21] [ He Peiyun, Long Mengqian, Feng Jie, et al. Response of tartary buckwheat to nitrogen application under drought stress[J]. Fujian Journal of Agricultural Sciences, 2021, 36(8): 892-898. ]
[22] Chu Z A, Sfj B, Jie H A, et al. Trade-off of within-leaf nitrogen allocation between photosynthetic nitrogen-use efficiency and water deficit stress acclimation in rice (Oryza sativa L.)[J]. Plant Physiology and Biochemisty, 2019, 135: 41-50.
[23] 谷晓博, 李援农, 杜娅丹, 等. 不同施氮水平对返青期水分胁迫下冬油菜补偿效应的影响[J]. 中国生态农业学报, 2016, 24(5): 572-581.
[23] [ Gu Xiaobo, Li Yuannong, Du Yadan, et al. Compensative impact of winter oilseed rape (Brassica napus L.) affected by water stress at re-greening stage under different nitrogen rate[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 572-581. ]
[24] 解婷婷, 单立山, 苏培玺. 不同施氮量下干旱胁迫对棉花生长及种内关系的影响[J]. 中国生态农业学报, 2020, 28(5): 643-651.
[24] [ Jie Tingting, Dan Lishan, Su Peixi. Effects of drought stress on cotton growth and intraspecific relationship under different nitrogen application rates[J]. Chinese Journal of Eco-Agriculture, 2020, 28(5): 643-651. ]
[25] 姚青青, 孙绘健, 马兴旺, 等. 减量追施氮肥运筹对棉花地上部干物质积累、分配及产量的影响[J]. 新疆农业科学, 2021, 58(8): 1398-1405.
[25] [ Yao Qingqing, Sun Huijian, Ma Xingwang, et al. Effects of reduced-amount nitrogen application on cotton aboveground dry matter accumulation, distribution and yield[J]. Xinjiang Agricultural Sciences, 2021, 58(8): 1398-1405. ]
[26] Fallahi H R, Kalantari R T, Aghhavani-Shajari M, et al. Effect of super absorbent polymer and irrigation deficit on water use efficiency, growth and yield of cotton[J]. Notulae Scientia Biologicae, 2015, 7(3): 338-344.
[27] Turner N C, Kramer P J. Adaptation of Plants to Water and High Temperature Stress[M]. USA: John Wiley and Sons, Inc., 1980.
[28] 陈玉梁, 石有太, 罗俊杰, 等. 干旱胁迫对彩色棉花农艺、品质性状和水分利用效率的影响[J]. 作物学报, 2013, 39(11): 2074-2082.
[28] [ Chen Yuliang, Shi Youtai, Luo Junjie, et al. Effect of drought stress on agronomic traits, quality, and WUE in different colored upland cotton varieties (lines)[J]. Acta Agronomica Sinica, 2013, 39(11): 2074-2082. ]
[29] 吕新, 张伟, 王登伟, 等. 棉花冠层对不同灌水量的反应[J]. 棉花学报, 2004, 16(1): 21-25.
[29] [ Lyu Xin, Zhang Wei, Wang Dengwei, et al. The response of cotton canopy to different irrigation[J]. Journal of Cotton, 2004, 16(1): 21-25. ]
[30] 张伟, 吕新. 棉花冠层对不同灌水量的反应及其产量形成研究[J]. 干旱区研究, 2004, 21(4): 425-429.
[30] [ Zhang Wei, Lyu Xin. Study on the effects of different irrigation volumes on cotton canopy[J]. Arid Zone Research, 2004, 21(4): 425-429. ]
[31] 闻磊, 张富仓, 邹海洋, 等. 水分亏缺和施氮对春小麦生长和水氮利用的影响[J]. 麦类作物学报, 2019, 39(4): 478-486.
[31] [ Wen Lei, Zhang Fucang, Zou Haiyang, et al. Effect of water deficit and nitrogen rate on the growth, water and nitrogen use of spring wheat[J]. Journal of Triticeae Crops, 2019, 39(4): 478-486. ]
[32] 石洪亮, 张巨松, 严青青, 等. 非充分滴灌下施氮量对棉花生长特性、产量及水氮利用率的影响[J]. 干旱地区农业研究, 2017, 35(4): 129-136.
[32] [ Shi Hongliang, Zhang Jusong, Yan Qingqing, et al. Effects of different nitrogen fertilizer levels on growth, yield, water and nitrogen use efficiency of cotton under non-sufficient drip irrigation[J]. Agricultural Research in Arid Areas, 2017, 35(4): 129-136. ]
[33] 孙宏勇, 张喜英, 陈素英, 等. 亏缺灌溉对冬小麦生理生态指标的影响及应用[J]. 中国生态农业学报, 2011, 19(5): 1086-1090.
[33] [ Sun Hongyong, Zhang Xiying, Chen Suying, et al. Effects of deficit irrigation on physio-ecological indices of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5): 1086-1090. ]
[34] 王晓英, 贺明荣, 刘永环, 等. 水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响[J]. 生态学报, 2008, 28(2): 685-694.
[34] [ Wang Xiaoying, He Mingrong, Liu Yonghuan, et al. nteractive effects of irrigation and nitrogen fertilizer on nitrogen fertilizer recovery and nitrate-N movement across soil profile in a winter wheat field[J]. Acta Ecologica Sinica, 2008, 28(2): 685-694. ]
[35] 王钊. 氮肥运筹对新疆大田滴灌棉花生长及氮素利用的影响[D]. 杨凌: 西北农林科技大学, 2016.
[35] [ Wang Zhao. Effects of Nitrogen Fertilizer to Fight the Growth and Nitrogen Utilization of Daeite Drip Irrigation in Xinjiang[D]. Yangling: Northwest A & F University & Technology, 2016. ]
[36] 胡国智, 张炎, 李青军, 等. 氮肥运筹对棉花干物质积累、氮素吸收利用和产量的影响[J]. 植物营养与肥料学报, 2011, 17(2): 397-403.
[36] [ Hu Guozhi, Zhang Yan, Li Qingjun, et al. Effect of nitrogen fertilizer management on the dry matter accumulation, N uptake and utilization and yield in cotton[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(2): 397-403. ]
[37] 张杰, 王备战, 冯晓, 等. 氮肥调控对冬小麦干物质量、产量和氮素利用效率的影响[J]. 麦类作物学报, 2014, 34(4): 516-520.
[37] [ Zhang Jie, Wang Beizhan, Feng Xiao, et al. Effect of nitrogen fertilizer management on the dry matter quantity, yield and N utilization in winter wheat[J]. Journal of Triticeae Crops, 2014, 34(4): 516-520. ]
[38] 王进斌, 谢军红, 李玲玲, 等. 氮肥运筹对陇中旱农区玉米光合特性及产量的影响[J]. 草业学报, 2019, 28(1): 60-69.
[38] [ Wang Jinbin, Xie Junhong, Li Lingling, et al. Effects of nitrogen management on photosynthetic characteristics and yield of maize in arid areas of central Gansu, China[J]. Acta Prataculturae Sinica, 2019, 28(1): 60-69. ]
Outlines

/