Comprehensive evaluation of drought tolerance of six forage species at the seedling stage

Expand
  • 1. Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    2. Sino-Zijin Resources Co. Ltd., Beijing 100012, China
    3. Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang 050031, Hebei, China

Received date: 2021-11-11

  Revised date: 2022-03-18

  Online published: 2022-05-30

Abstract

Artificial grassland can be planted in arid and semi-arid areas to screen forage species with strong drought resistance at the seedling stage. A water controlling experiment was conducted to determine the effect of drought stress on six forage species by adopting the pot culture method. The plant height (PH), shoot dry weight, root dry weight (RDW), root-shoot ratio (RSR), relative water content (RWC), proline content (Pro), soluble protein content (SP), antioxidant enzyme activity, and other indices of six materials were measured. Based on the drought resistance coefficient of each individual index, correlation analysis, principal component analysis, and subordinate function analysis were performed to comprehensively evaluate the drought resistance of six forage species. Result showed that drought stress had significant effects on the growth and physiological indices of six test materials. Correlation analysis showed that 12 indices such as PH, growth rate, and RDW were positively correlated with one another, but a negative correlation was observed between the 12 indices and malondialdehyde content. Principal component analysis showed that the contribution rate of four principal components could reach 98.40%, which could represent most of the data information of six test materials. The drought resistance (D value) of six test materials was comprehensively evaluated using a subordinate function method and weight coefficients, and the drought resistance ability of test materials was presented in the following order: Elytrigia elongatum > Elymus dahuricus > Astragalus adsurgens > Bromus inermis > Medicago sativa > Agropyron cristatum. Moreover, the D value was found to be significantly and positively correlated with PH (0.984**), RDW (0.948**), free proline content (0.971**), and soluble protein content, indicating that it can be used as a good indicator for screening drought tolerance of similar materials at the seedling stage.

Cite this article

TIAN Xiaoxia,WEI Xiaofeng,WEI Hao,XU Mingshuang,MAO Peichun . Comprehensive evaluation of drought tolerance of six forage species at the seedling stage[J]. Arid Zone Research, 2022 , 39(3) : 978 -985 . DOI: 10.13866/j.azr.2022.03.31

References

[1] Zhang S H, Xu X F, Sun Y M, et al. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress[J]. Journal of Integrative Agriculture, 2018, 17(2): 336-347.
[2] Bahrami F, Arzani A, Karimi V. Evaluation of yield-based drought tolerance indices for screening safflower genotypes[J]. Agronomy Journal, 2014, 106(4): 1219-1224.
[3] Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences, 2015, 72(4): 673-689.
[4] 杨育苗, 蒋志荣, 安力. 干旱胁迫下旱砂地籽瓜生理响应及其抗旱性评价[J]. 干旱区研究, 2018, 35(3): 735-742.
[4] [ Yang Yumiao, Jiang Zhirong, An Li. Physiological response and drought resistance of seed watermelons in dry sandy land[J]. Arid Zone Research, 2018, 35(3): 735-742. ]
[5] Jin R, Shi H, Han C, et al. Physiological changes of purslane (Portulaca oleracea L. ) after progressive drought stress and rehydration[J]. Scientia Horticulturae, 2015, 194: 215-221.
[6] 杜建雄, 师尚礼, 刘金荣, 等. 干旱胁迫和复水对草地早熟禾3个品种生理特性的影响[J]. 草地学报, 2010, 18(1): 73-77.
[6] [ Du Jianxiong, Shi Shangli, Liu Jinrong, et al. Effects of drought stress and rewatering on physiological characteristics of three kentucky bluegrass cultivars[J]. Acta agrestia sinica, 2010, 18(1): 73-77. ]
[7] 刘文瑜, 何斌, 杨发荣, 等. 不同品种藜麦幼苗对干旱胁迫和复水的生理响应[J]. 草业科学, 2019, 36(10): 2656-2666.
[7] [ Liu Wenyu, He Bin, Yang Farong, et al. Physiological response to drought and re-watering of different quinoa varieties[J]. Pratacultural Science, 2019, 36(10): 2656-2666. ]
[8] 刘婷婷, 陈道钳, 王仕稳, 等. 不同品种高粱幼苗在干旱复水过程中的生理生态响应[J]. 草业学报, 2018, 27(6): 100-110.
[8] [ Liu Tingting, Chen Daoqian, Wang Shiwen, et al. Physio-ecological responses to drought and subsequent re-watering in sorghum seedlings[J]. Acta Prataculturae Sinina, 2018, 27(6): 100-110. ]
[9] Chen D, Chen D Q, Wu X, et al. Genotypic variation Greenth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings[J]. Frontiers in Plant Science, 2015, 6: 1241.
[10] 姜华, 毕玉芬, 陈连仙, 等. 旱作条件下紫花苜蓿生理特性的研究[J]. 草地学报, 2012, 20(6): 1077-1080.
[10] [ Jiang Hua, Bi Yufen, Chen Lianxian, et al. Physiologica characteristics of alfalfa under dry-farming conditions[J]. Acta Agaestia Sinica, 2012, 20(6): 1077-1080. ]
[11] Jevgenija N, Gederts E I.Interacting influence of cold stratification treatment and osmotic potential on seed germination of Triglochin maritina L.[J]. Acta Universitatis Latviens, 2007, 723: 115-122.
[12] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 208-218.
[12] [ Gao Junfeng. The Experimental Instruction for Plant Physiology[M]. Beijing: Higher Education Press, 2006: 208-218. ]
[13] 李佩佩, 李毅, 苏世平, 等. 抗旱优良红砂家系的早期选择与评价[J]. 干旱区研究, 2020, 37(3): 706-714.
[13] [ Li Peipei, Li Yi, Su Shiping, et al. Early selection and evaluation of superior families with drought resistance in Reaumuria soongorica[J]. Arid Zone Research, 2020, 37(3): 706-714. ]
[14] 刘小慧, 王重丽, 王梦茹, 等. 圭亚那柱花草苗期抗旱性评价及抗旱种质鉴定[J]. 草地学报, 2020, 28(4): 956-967.
[14] [ Liu Xiaohui, Wang Chongli, Wang Mengru, et al. Evaluation on drought-resistance of Stylssanthss guianensis and identification for drought-resistance germplasms in seedling stage[J]. Acta Agresia Sinica, 2020, 28(4): 956-967. ]
[15] 田小霞, 许明爽, 郑明利, 等. 黄花草木樨苗期抗旱性鉴定及抗旱指标筛选[J]. 干旱区资源与环境, 2021, 35 (10): 120-127.
[15] [ Tian Xiaoxia, Xu Mingshuang, Zheng Mingli, et al. Drought resistance identification and drought resistance indices screening of Melilotus officinalis resources at seedling stage[J]. Journal of Arid Land Resources and Environment, 2021, 35(10): 120-127. ]
[16] 李金航, 齐秀慧, 徐程扬, 等. 华北4产地黄栌幼苗根系形态对水分胁迫的短期响应[J]. 北京林业大学学报, 2014, 36(1): 48-54.
[16] [ Li Jinghang, Qi Xiuhui, Xu Chengyang, et al. Short-term responses of root morphology to droght stress of Cotinus coggygria seedlings from four varied locations in northern China[J]. Jordanal of Beijing Forresty University, 2014, 36(1): 48-54. ]
[17] 孙三杰, 李建明, 宗建伟, 等. 亚低温与水分胁迫对番茄幼苗根系形态及叶片结构的影响[J]. 应用生态学报, 2012, 23(11): 3027-3032.
[17] [ Sun Sanjie, Li Jianming, Zong Jianwei, et al. Effects of sub-low temperature and drought stress on root morphology and leaf structure of tomato sedlings[J]. China Journal of Applied Ecology, 2012, 23(11): 3027-3032. ]
[18] 王平, 王沛, 孙万斌, 等. 8份披碱草属牧草苗期抗旱性综合评价[J]. 草地学报, 2020, 28(2): 397-404.
[18] [ Wang Ping, Wang Pei, Sun Wanbin, et al. Comprehensive evaluation of drought resistance of eight Elymus germplasms at seedling stage[J]. Acta Agrestia Sinica, 2020, 28(2): 397-404. ]
[19] Reddy A R, Chaitanya K V, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology Journal, 2004, 161: 1189-1202.
[20] Seki M, Umezawa T, Urano K, et al. Regulatory metabolic networks in drought stress responses[J]. Current Opinion in Plant Biology, 2007, 10: 296-302.
[21] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59: 206-216.
[22] Bartels D, Sunkar R. Drought and salt tolerance in plants[J]. Critical Reviews in Plant Sciences, 2005, 24: 23-58.
[23] 姜梦辉, 孙丰磊, 杨阳, 等. 棉花陆海重组自交系群体花铃期抗旱性鉴定及评价[J]. 干旱区研究, 2020, 37(6): 1635-1643.
[23] [ Jiang Menghui, Sun Fenglei, et al. Identification and evaluation of drought resistance of upland-island recombination inbred line population at blossoming and boll-forming stages[J]. Arid Zone Research, 2020, 37(6): 1635-1643. ]
[24] Zou J, Hu W, Li Y X, et al. Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L. )[J]. Journal of Integrative Agriculture, 2020, 19(2): 495-508.
[25] 石永红, 万里强, 刘建宁, 等. 多年生黑麦草抗旱性主成分及隶属函数分析[J]. 草地学报, 2010, 18(5): 669-672.
[25] [ Shi Yonghong, Wan Liqiang, Liu Jianning, et al. Analysis of the principal components and the subordinate function of Lolium perenne drouht resistance[J]. Acta Agrestia Sinica, 2010, 18(5): 669-672. ]
[26] 李京蓉, 周学斌, 马真, 等. 6种高寒牧区禾本科牧草抗旱性研究与评价[J]. 草地学报, 2018, 26(3): 659-665.
[26] [ Li Jingrong, Zhou Xuebin, Ma Zhen, et al. Research and evaluation on drought resistance of six grasses in high-cold pastoral area[J]. Acta Agrestia Sinica, 2018, 26(3): 659-665. ]
[27] 张小娇, 祁娟, 曹文侠, 等. 干旱胁迫下垂穗披碱草苗期抗旱生理特性的影响[J]. 草原与草坪, 2014, 34(5): 55-59.
[27] [ Zhang Xiaojiao, Qi Juan, Cao Wenxia, et al. Effect of drought stress on physiological characteristics of Elymus nutans in seedling stage[J]. Grassland and Turf, 2014, 34(5): 55-59. ]
[28] 杨伟, 刘文辉, 马祥, 等. 干旱胁迫对2种不同抗旱性老芒麦幼苗ROS积累及抗氧化系统的影响[J]. 草地学报, 2020, 28(3): 684-693.
[28] [ Yang Wei, Liu Wenhui, Ma Xiang, et al. Effect of ROS accumulation and antioxidant system in two different drought resistant Elymus sibiricus under drought stress[J]. Acta Agrestia Sinica, 2020, 28(3): 684-693. ]
[29] 李怡, 侯向阳, 武自念, 等. 羊草种质资源抗旱性评价. 中国草地学报, 2019, 41(1): 75-82.
[29] [ Li Yi, Hou Xiangyang, Wu Zinian, et al. Comprehensive evaluation on drought-resistance of Leymus chinensis germplasm resources[J]. Chinese Journal of Grassland, 2019, 41(1): 75-82. ]
Outlines

/