Soil mechanical composition and soil nutrient content of Reaumuria soongorica nebkhas

Expand
  • 1. College of Desert Management, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
    2. Hangjin National Positioning Observation and Research Station of Desert Ecosystem, Ordos 017400, Inner Mongolia, China
    3. Hohhot Weather Station, Hohhot 010018, Inner Mongolia, China

Received date: 2021-09-04

  Revised date: 2021-12-12

  Online published: 2022-05-30

Abstract

Understanding the effects of desert shrubs on the soil structure and nutrient spatial heterogeneity of nebkhas is important for maintaining the stability of desert ecosystems and preventing regional desertification. In this study, soil grain-size composition and soil nutrient accumulation of Reaumuria soongorica in the steppe desert transition zone of Baiyinengel Nature Reserve, Hangjin Banner, Ordos City, were analyzed. (1) The soil was mainly fine sand (content ranging from 36.34% to 65.31%); the clay and silt content was less than 7.00%. (2) Reaumuria soongorica protects nebkhas from wind erosion and also plays a role in fixing quicksand. The sediment of nebkhas tended to be refined, and particle sorting became successively worse from the leeward side to the windward side and the open space between nebkhas. The particle distribution peak became wider and flatter, and the fractal dimension became smaller. The distribution of soil particle size composition in the shrub nebkha was more symmetrical than that in the open space between the mounds. (3) The soil organic matter (SOM), alkaline hydrolyzed nitrogen (AN), available phosphorus (AP), and available potassium (AK) contents on the windward and leeward sides of the nebkha increased by 29.37% and 40.63%, 23.49% and 35.12%, 62.72% and 66.45%, 30.10% and 22.75% (P<0.05), respectively, and RII (Relative Interaction Intense) > 0. Under the influence of wind erosion and plant feedback, nutrients were enriched in nebkhas, forming “fertile islands. ”

Cite this article

LI Xiaole,WEI Yajuan,DANG Xiaohong,DAI Yuzhi,ZHAI Bo,CHI Xu,WU Huimin . Soil mechanical composition and soil nutrient content of Reaumuria soongorica nebkhas[J]. Arid Zone Research, 2022 , 39(3) : 933 -942 . DOI: 10.13866/j.azr.2022.03.27

References

[1] Wang X, Zhang C, Zhang J, et al. Nebkha formation: Implications for reconstructing environmental changes over the past several centuries in the Ala Shan Plateau, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297(3-4): 697-706.
[2] Valiente-Banuet A, Bolongaro-Crevenna A, Briones O, et al. Spatial relationships between cacti and nurse shrubs in a semi-arid environment in Central Mexico[J]. Journal of Vegetation Science, 1991, 2(1): 15-20.
[3] Li J, Zhao Y, Liu H, et al. Sandy desertification cycles in the southwestern Mu Us Desert in China over the past 80 years recorded based on nebkha sediments[J]. Aeolian Research, 2016, 20: 100-107.
[4] 刘冰, 赵文智, 杨荣. 荒漠绿洲过渡带柽柳灌丛沙堆特征及其空间异质性[J]. 生态学报, 2008, 28(4): 1446-1455.
[4] [ Liu Bing, Zhao Wenzhi, Yang Rong. Characteristics and spatial heterogeneity of Tamarix ramosissima Nebkhas at desert-oasis ecotone[J]. Acta Ecologica Sinica, 2008, 28(4): 1446-1455. ]
[5] Hesp P A, Hernández-Calvento L, Cordero A I H, et al. Nebkha development and sediment supply[J]. Science of the Total Environment, 2021, 773: 1-35.
[6] 董雪, 郝玉光, 辛智鸣, 等. 浑善达克沙地3种典型灌丛固沙能力的比较研究[J]. 林业科学研究, 2020, 33(1): 76-83.
[6] [ Dong Xue, Hao Yuguang, Xin Zhiming, et al. Comparative study on sand-fixing capability of three typical shrubs in Otindag Sandy Land[J]. Forest Research, 2020, 33(1): 76-83. ]
[7] 武胜利, 李志忠, 肖晨曦, 等. 灌丛沙堆的研究进展与意义[J]. 中国沙漠, 2006, 26(5): 734-738.
[7] [ Wu Shengli, Li Zhizhong, Xiao Chenxi, et al. Research progress on nabkhas and research significance[J]. Journal of Desert Research, 2006, 26(5): 734-738. ]
[8] 刘小娥, 苏世平, 李毅. 兰州市南北两山典型灌丛土壤理化性质[J]. 草业学报, 2021, 30(6): 28-39.
[8] [ Liu Xiao’e, Su Shiping, Li Yi. Soil physical and chemical properties under four typical shrubs found on the northern and southern mountains of Lanzhou City, Northwest China[J]. Acta Prataculturae Sinica, 2021, 30(6): 28-39. ]
[9] 何玉惠, 刘新平, 谢忠奎. 红砂灌丛对土壤和草本植物特征的影响[J]. 生态学杂志, 2011, 30(11): 2432-2436.
[9] [ He Yuhui, Liu Xinping, Xie Zhongkui. Effects of Reaumuria soongorica on its underlying soil properties and herb plant characteristics[J]. Chinese Journal of Ecology, 2011, 30(11): 2432-2436. ]
[10] 何玉惠, 刘新平, 谢忠奎. 红砂灌丛对土壤盐分和养分的富集作用[J]. 干旱区资源与环境, 2015, 29(3): 115-119.
[10] [ He Yuhui, Liu Xinping, Xie Zhongkui. Enrichment of soil salinity and nutrients under desertification shrub Reaumuria soongorica[J]. Journal of Arid Land Resources and Environment 2015, 29(3): 115-119. ]
[11] 党晓宏, 蒙仲举, 高永, 等. 西鄂尔多斯天然荒漠灌丛光合生态适应性[J]. 干旱区研究, 2020, 37(2): 435-443.
[11] [ Dang Xiaohong, Meng Zhongju, Gao Yong, et al. Photosynthetic characteristics and ecological adaptability of desert shrubs in western Ordos[J]. Arid Zone Research, 2020, 37(2): 435-443. ]
[12] Zhang Pujin, Yang Jie, Zhao Liqing, et al. Effect of Caragana tibetica nebkhas on sand entrapment and fertile islands in steppe-desert ecotones on the Inner Mongolia Plateau, China[J]. Plant and Soil, 2011, 347(1-2): 79-90.
[13] 高广磊, 丁国栋, 赵媛媛, 等. 生物结皮发育对毛乌素沙地土壤粒度特征的影响[J]. 农业机械学报, 2014, 45(1): 115-120.
[13] [ Gao Guanglei, Ding Guodong, Zhao Yuanyuan, et al. Effects of biological soil crusts on soil particle size characteristics in Mu Us Sandland[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 115-120. ]
[14] Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 1922, 30(5): 377-392.
[15] Folk R L, Ward W C. Brazos River Bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26.
[16] Tyler Scott W, Wheatcraft Stephen W. Application of fractal mathematics to soil water retention estimation[J]. Soil Science Society of America Journal, 1989, 53(4): 987-996.
[17] Armas Cristina, Ordiales Ramón, Pugnaire Francisco I. Measuring plant interactions: A new comparative index[J]. Ecology, 2004, 85(10): 2682-2686.
[18] 常兆丰, 张进虎, 石学刚, 等. 沙漠植物分层侧影与积沙成丘的关系[J]. 生态学报, 2017, 37(21): 7351-7358.
[18] [ Chang Zhaofeng, Zhang Jinhu, Shi Xuegang, et al. Initial research on the relationship between sand-mound formation and the layered silhouette of desert plants[J]. Acta Ecologica Sinica, 2017, 37(21): 7351-7358. ]
[19] 杜建会, 严平, 董玉祥. 干旱地区灌丛沙堆研究现状与展望[J]. 地理学报, 2010, 65(3): 339-350.
[19] [ Du Jianhui, Yan Ping, Dong Yuxiang. The progress and prospects of nebkhas in arid areas[J]. Journal of Geographical Sciences, 2010, 65(3): 339-350. ]
[20] 苑依笑, 王仁德, 常春平, 等. 风蚀作用下农田土壤细颗粒的粒度损失特征及其对土壤性质影响[J]. 水土保持学报, 2018, 32(2): 104-109, 119.
[20] [ Wan Yixiao, Wang Rende, Chang Chunping, et al. Loss characteristics of fine particles by wind in farmland and its effect on soil properties[J]. Journal of Soil and Water Conservation, 2018, 32(2): 104-109, 119. ]
[21] Martinez-Meza Ernesto, Whitford Walter G. Stemflow, throughfall and channelization of stemflow by roots in three Chihuahuan desert shrubs[J]. Journal of Arid Environments, 1996, 32(3): 271-287.
[22] 吴正. 风沙地貌学[M]. 北京: 科学出版社, 1987.
[22] [ Wu Zheng. Aeolian Geomorphology[M]. Beijing: Science Press, 1987. ]
[23] 刘进辉, 王雪芹, 马洋. 沙漠绿洲过渡带柽柳灌丛沙堆-丘间地系统土壤养分空间异质性[J]. 生态学报, 2016, 36(4): 979-990.
[23] [ Liu Jinhui, Wang Xueqin, Ma Yang. Spatial variation of soil nutrients of Tamarix ramosissima nebkhas and interdune areas in a desert-oasis ecotone[J]. Acta Ecologica Sinica, 2016, 36(4): 979-990. ]
[24] 张萍, 哈斯, 吴霞, 等. 单个油蒿灌丛沙堆气流结构的野外观测研究[J]. 应用基础与工程科学学报, 2013, 21(5): 881-889.
[24] [ Zhang Ping, Ha Si, Wu Xia, et al. Filed investigation on airflow profile of an Artemisia ordosica nebkha dune[J]. Journal of Basic Science and Engineering, 2013, 21(5): 881-889. ]
[25] 李向洁, 李志文, 杜建会, 等. 南昌市厚田沙地蔓荆灌丛沙堆的形态与沉积特征[J]. 地理科学, 2021, 41(11): 2042-2051.
[25] [ Li Xiangjie, Li Zhiwen, Du Jianhui, et al. Morphology and sedimentary characteristics of Vitex trifolia nebkhas in the Houtian Sandy Land of Nanchang City[J]. Scientia Geographica Sinica, 2021, 41(11): 2042-2051. ]
[26] 武胜利, 李志忠, 惠军, 等. 灌丛沙堆表面压力分布特征的实验研究[J]. 干旱区地理, 2006, 29(6): 790-796.
[26] [ Wu Shengli, Li Zhizhong, Hui Jun, et al. Study on the distribution character of surface pressure of nabkha in wind-tunnel imitative experiment[J]. Arid Land Geography, 2006, 29(6): 790-796. ]
[27] 曹媛, 杨新国, 陈林, 等. 柠条引入对沙化草地土壤颗粒组分的影响[J]. 干旱区研究, 2020, 37(6): 1437-1446.
[27] [ Cao Yuan, Yang Xinguo, Chen Lin, et al. Effects of Caragana intermedia on soil particles in desertified grassland[J]. Arid Zone Research, 2020, 37(6): 1437-1446. ]
[28] 李新荣. 干旱沙区土壤空间异质性变化对植被恢复的影响[J]. 中国科学(D辑: 地球科学), 2005, 35(4): 361-370.
[28] [ Li Xinrong. Effects of soil spatial heterogeneity on vegetation restoration in arid sandy region[J]. Scientia Sinica(Terrae), 2005, 35(4): 361-370. ]
[29] Dean W R J, Milton S J, Jeltsch F. Large trees, fertile islands, and birds in arid savanna[J]. Journal of Arid Environments, 1999, 41(1): 61-78.
[30] 王晓凌, 陈明灿, 易现峰, 等. 垄沟覆膜集雨系统垄宽和密度效应对玉米产量的影响[J]. 农业工程学报, 2009, 25(8): 40-47.
[30] [ Wang Xiaoling, Chen Mingcan, Yi Xianfeng, et al. Effects of ridge width and planting density on corn yields in rainwater-harvesting system with plastic film mulching on ridge[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(8): 40-47. ]
[31] 孙特生, 李文彦, 刘继亮. 黑河中游荒漠绿洲人工梭梭土壤养分特征[J]. 干旱区资源与环境, 2017, 31(5): 179-185.
[31] [ Sun Tesheng, Li Wenyan, Liu Jiliang. Soil nutrient characteristics of Haloxylon ammodendron plantation in a desert-oasis region in the middle reaches of Heihe River Basin[J]. Journal of Arid Land Resources and Environment, 2017, 31(5): 179-185. ]
[32] 罗维成, 赵文智, 任珩, 等. 不同气候区灌丛沙堆形态及土壤养分积累特征[J]. 中国沙漠, 2021, 41(2): 191-199.
[32] [ Luo Weicheng, Zhao Wenzhi, Ren Heng, et al. Nebkha morphological characteristics and soil nutrition content in three regions with different climates in North China[J]. Journal of Desert Research, 2021, 41(2): 191-199. ]
[33] 苏永中, 赵哈林, 张铜会. 几种灌木、 半灌木对沙地土壤肥力影响机制的研究[J]. 应用生态学报, 2002, 13(7): 802-806.
[33] [ Su Yongzhong, Zhao Halin, Zhang Tonghui. Influencing mechanism of several shrubs and subshrubs on soil fertility in Keerqin sandy land[J]. Chinese Journal of Applied Ecology, 2002, 13(7): 802-806. ]
[34] 常帅, 于红博, 张巧凤, 等. 锡林郭勒草原土壤速效氮空间变异分析[J]. 草业学报, 2021, 30(7): 11-21.
[34] [ Chang Shuai, Yu Hongbo, Zhang Qiaofeng, et al. Analysis of spatial variability of soil available nitrogen in Xilingol grassland[J]. Acta Prataculturae Sinica, 2021, 30(7): 11-21. ]
[35] Albrecht A, Serigne T K. Carbon sequestration in tropical agroforestry systems[J]. Agriculture, Ecosystems and Environment, 2003, 99: 15-27.
[36] Peichl M, Thevathasan N V, Gordon A M, et al. Carbon sequestration potentials in temperate tree-based inter-cropping systems, southern Ontario, Canada[J]. Agroforestry Systems, 2006, 66: 243-257.
[37] Takimoto A, Nair V D, Nair P K R. Contribution of trees to soil carbon sequestration under agroforestry systems in the West African Sahel[J]. Agroforestry Systems, 2009, 76: 11-25.
Outlines

/