Study on spatio-temporal dynamics and driving factors of NPP in Central Asian grassland
Received date: 2021-07-20
Revised date: 2022-01-09
Online published: 2022-05-30
Based on the CASA and Miami models, the net primary productivity (NPP) of five Central Asian countries (Kazakhstan, Tajikistan, Kyrgyzstan, Turkmenistan, and Uzbekistan) was calculated in this study. The purpose was to explore the Spatio-temporal dynamics and driving factors of NPP in Central Asian grassland from 2001 to 2019. The results showed that the average ANPP of grassland in Central Asia from 2001 to 2019 was 118.9 g C·m-2·a-1. On the spatial scale, the ANPP of grassland in the plain area increased gradually from south to north with increasing latitude. In contrast, the ANPP of grassland from plain to mountain grassland increased with increasing altitude. On the temporal scale, the overall growth trend of ANPP was not significant, and the future change trend of grassland ANPP in approximately 60% of the region was opposite to that of the past. The trend was not significant in the region of Central Asia with increased grassland ANPP where human activities are dominant and with decreased grassland ANPP, with climate change as the main driving force. A significant positive correlation existed between ANPP and precipitation accounting for 67.8%, with no significant relationship between temperature and the change of ANPP in Central Asian grassland. Therefore, precipitation is the main climatic factor affecting the change of ANPP in Central Asian grassland.
Key words: NPP; Central Asia; grassland; change trend; climate change; human activities
ZHANG Yunxin,HAO Haichao,FAN Lianlian,LI Yaoming,ZHANG Renping,LI Kaihui . Study on spatio-temporal dynamics and driving factors of NPP in Central Asian grassland[J]. Arid Zone Research, 2022 , 39(3) : 698 -707 . DOI: 10.13866/j.azr.2022.03.04
[1] | 李均力, 包安明, 陈曦, 等. 气候变化背景下的中亚资源与环境[M]. 北京: 气象出版社, 2017: 1, 79-81. |
[1] | [ Li Junli, Bao Anming, Chen Xi, et al. Resources and Environment in Central Asia in the Context of Climate Change[M]. Beijing: Meteorological Press, 2017: 1, 79-81. ] |
[2] | 梁倩, 光莹, 刘琼, 等. 新疆及周边中亚地区中亚低涡背景下云中液态水分布研究[J]. 干旱区地理, 2020, 43(1): 72-78. |
[2] | [ Liang Qian, Guang Ying, Liu Qiong, et al. Study on the distribution of liquid water in clouds under the background of Central Asian vortex in Xinjiang and its surrounding Central Asia[J]. Arid Land Geography, 2020, 43(1): 72-78. ] |
[3] | 胡广录, 赵文智, 王岗. 干旱荒漠区斑块状植被空间格局及其防沙效应研究进展[J]. 生态学报, 2011, 31(24): 7609-7616. |
[3] | [ Hu Guanglu, Zhao Wenzhi, Wang Gang. Research progress on spatial pattern of patchy vegetation and its sand control effect in arid desert area[J]. Acta Ecologica Sinica, 2011, 31(24): 7609-7616. ] |
[4] | Hu Z Y, Zhang C, Hu Q, et al. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets[J]. Journal of Climate, 2014, 27(3): 1143-1167. |
[5] | Lioubimtseva E, Cole R, Adams J M, et al. Impacts of climate and land-cover changes in arid lands of Central Asia[J]. Journal of Arid Environments, 2005, 62(2): 285-308. |
[6] | Dehghan S, Salehnia N, Sayari N, et al. Prediction of meteorological drought in arid and semi-arid regions using PDSI and SDSM: A case study in Fars Province, Iran[J]. Journal of Arid Land, 2020, 12: 318-330. |
[7] | 刘春静, 张丽, 周宇, 等. 中国新疆及中亚五国干旱区草地覆盖度反演与分析[J]. 草业科学, 2016, 33(5): 861-870. |
[7] | [ Liu Chunjing, Zhang Li, Zhou Yu, et al. Inversion and analysis of grassland coverage in arid areas of Xinjiang, China and five Central Asian countries[J]. Pratacultural Science, 2016, 33(5): 861-870. ] |
[8] | 周可法, 张清, 陈曦, 等. 中亚干旱区生态环境变化的特点和趋势[J]. 中国科学: 地球科学, 2006, 36(增刊2): 133-139. |
[8] | [ Zhou Kefa, Zhang Qing, Chen Xi, et al. Characteristics and trends of ecological environment changes in arid areas of Central Asia[J]. Chinese Science: Earth Sciences, 2006, 36(Suppl.2): 133-139.] |
[9] | 杨恕, 田宝. 中亚地区生态环境问题述评[J]. 东欧中亚研究, 2002(5): 51-55. |
[9] | [ Yang Shu, Tian Bao. A review of eco-environmental problems in Central Asia[J]. Eastern European and Central Asian Studies, 2002(5): 51-55. ] |
[10] | Liang T G, Feng Q S, Yu H, et al. Dynamics of natural vegetation on the Tibetan Plateau from past to future using a comprehensive and sequential classification system and remote sensing data[J]. Grassland Science, 2012, 58(4): 208-220. |
[11] | 辛晓平, 张保辉, 李刚, 等. 1982-2003年中国草地生物量时空格局变化研究[J]. 自然资源学报, 2009, 24(9): 1582-1592. |
[11] | [ Xin Xiaoping, Zhang Baohui, Li Gang, et al. Study on spatio-temporal pattern change of grassland biomass in China from 1982 to 2003[J]. Journal of Natural Resources, 2009, 24(9): 1582-1592. ] |
[12] | 刘纪远, 邵全琴, 樊江文. 三江源区草地生态系统综合评估指标体系[J]. 地理研究, 2009, 28(2): 273-283. |
[12] | [ Liu Jiyuan, Shao Quanqin, Fan Jiangwen. Comprehensive evaluation index system of grassland ecosystem in the source area of the Three Rivers[J]. Geographical Research, 2009, 28(2): 273-283. ] |
[13] | Han Q F, Luo G P, Li C F, et al. Simulated grazing effects on carbon emission in Central Asia[J]. Agricultural and Forest Meteorology, 2016, 216: 203-214. |
[14] | Roxburgh S H, Berry S L, Buckley T N, et al. What is NPP? Inconsistent accounting of respiratory fluxes in the definition of net primary production[J]. Functional Ecology, 2005, 19(3): 378-382. |
[15] | 朴世龙, 方精云, 郭庆华. 1982-1999年我国植被净第一性生产力及其时空变化[J]. 北京大学学报(自然科学版), 2001, 37(4): 563-569. |
[15] | [ Piao Shilong, Fang Jingyun, Guo Qinghua. Net primary productivity and its spatio-temporal change of vegetation in China from 1982 to 1999[J]. Journal of Peking University(Natural Science Edition), 2001, 37(4): 563-569. ] |
[16] | Gao Q Z, Zhu W Q, Schwartz M W, et al. Climatic change controls productivity variation in global grasslands[J]. Scientific Reports, 2016, 6(1): 26958. |
[17] | Guo H, Bao A M, Liu T, et al. Spatial and temporal characteristics of droughts in Central Asia during 1966-2015[J]. Science of the Total Environment, 2018, 624: 1523-1538. |
[18] | Miao L J, Ye P L, He B, et al. Future climate impact on the desertification in the dry land Asia using AVHRR GIMMS NDVI3g data[J]. Remote Sensing, 2015, 7(4): 3863-3877. |
[19] | Zhou Y, Zhang L, Xiao J F, et al. Spatiotemporal transition of institutional and socioeconomic impacts on vegetation productivity in Central Asia over last three decades[J]. Science of the Total Environment, 2019, 658: 922-935. |
[20] | Chen T, Bao A M, Jiapaer G, et al. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982-2015[J]. Science of the Total Environment, 2019, 653(FEB. 25): 1311-1325. |
[21] | Lioubimtseva E, Cole R, Adams J M, et al. Impacts of climate and land-cover changes in arid lands of Central Asia[J]. Journal of Arid Environments, 2005, 62(2): 285-308. |
[22] | 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异[J]. 中国科学: 地球科学, 2011, 41(11): 1647-1657. |
[22] | [ Chen Fahu, Huang Wei, Jin Liya, et al. Variation characteristics and spatial differences of precipitation in arid areas of Central Asia under the background of global warming[J]. Chinese Science: Geoscience, 2011, 41(11): 1647-1657. ] |
[23] | 马安娜, 于贵瑞, 何念鹏, 等. 中国草地植被地上和地下生物量的关系分析[J]. 第四纪研究, 2014, 34(4): 769-776. |
[23] | [ Ma An’na, Yu Guirui, He Nianpeng, et al. Analysis on the relationship between aboveground and underground biomass of grassland vegetation in China[J]. Quaternary Sciences, 2014, 34(4): 769-776. ] |
[24] | Chen B X, Zhang X Z, Tao J, et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau[J]. Agricultural and Forest Meteorology, 2014, 189-190: 11-18. |
[25] | Chen T, Tang G P, Yuan Y, et al. Unraveling the relative impacts of climate change and human activities on grassland productivity in Central Asia over last three decades[J]. Science of the Total Environment, 2020, 743, doi.org/10.1016/j.scitotenv.2020.140649. |
[26] | 朱文泉, 潘耀忠, 何浩. 中国典型植被最大光利用率模拟[J]. 科学通报, 2006, 51(6): 86-92. |
[26] | [ Zhu Wenquan, Pan Yaozhong, He Hao. Simulation of maximum light utilization efficiency of typical vegetation in China[J]. Chinese Science Bulletin, 2006, 51(6): 86-92. ] |
[27] | 刘洁, 孟宝平, 葛静, 等. 基于CASA模型和MODIS数据的甘南草地NPP时空动态变化研究[J]. 草业学报, 2019, 28(6): 19-32. |
[27] | [ Liu Jie, Meng Baoping, Ge Jing, et al. Study on spatio-temporal dynamic changes of NPP in Gannan grassland based on CASA model and MODIS data[J]. Acta Prataculata Sinica, 2019, 28(6): 19-32. ] |
[28] | 胡宁宁. 长期过度放牧致羊草个体“矮小化”的调控机制--基于氮代谢途径的研究[D]. 北京: 中国农业科学院, 2017. |
[28] | [ Hu Ningning. Regulatory Mechanism of “Dwarfing” of Leymus chinensis Caused by Long-Term Overgrazing: A Study Based on Nitrogen Metabolic Pathway[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. ] |
[29] | Lioubimtseva E. Climate change in arid environments: Revisiting the past to understand the future[J]. Progress in Physical Geography, 2004, 28(4): 502-530. |
[30] | Zhang C, Lu D S, Chen X, et al. The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls[J]. Remote Sensing of Environment, 2016, 175: 271-281. |
[31] | Gourdji S M, Sibley A M, Lobell D B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections[J]. Environmental Research Letters, 2013, 8(2): 024041, doi: 10.1088/1748-9326/8/2/024041. |
[32] | Li C F, Zhang C, Luo G P, et al. Carbon stock and its responses to climate change in Central Asia[J]. Global Change Biology, 2015, 21(5): 1951-1967. |
[33] | 刘国华, 傅伯杰. 全球气候变化对森林生态系统的影响[J]. 自然资源学报, 2001, 1(1): 71-78. |
[33] | [ Liu Guohua, Fu Bojie. Impact of global climate change on forest ecosystem[J]. Journal of Natural Resources, 2001, 1(1): 71-78. ] |
[34] | 刘婵, 刘冰, 赵文智, 等. 中亚地区植被净初级生产力时空动态及其与气候因子关系[J]. 遥感技术与应用, 2020, 35(4): 924-933. |
[34] | [ Liu Chan, Liu Bing, Zhao Wenzhi, et al. Spatio-temporal dynamics of net primary productivity of vegetation in Central Asia and its relationship with climatic factors[J]. Remote Sensing Technology and Application, 2020, 35(4): 924-933. ] |
[35] | Chen Y Z, Ju W M, Groisman P Y, et al. Quantitative assessment of carbon sequestration reduction induced by disturbances in temperate Eurasian steppe[J]. Environmental Research Letters, 2017, 12(11): 115005, doi.org/10.1088/1748-9326/aa849b. |
[36] | Nora D, Karin F, David S. Land Reform and Farm Restructuring in Transition Countries:The Experience of Bulgaria, Moldova, Azerbaijan, and Kazakhstan[M]. Washington, D C: World Bank Publications, 2007. |
[37] | Kraemer R, Prishchepov A V, Müller D, et al. Long-term agricultural land-cover change and potential for cropland expansion in the former virgin lands area of Kazakhstan[J]. Econstor Open Access Articles, 2015, 10(5): 054012, doi: 10.1088/1748-9326/10/5/054012. |
[38] | 王明君, 韩国栋, 崔国文, 等. 放牧强度对草甸草原生产力和多样性的影响[J]. 生态学杂志, 2010, 29(5): 862-868. |
[38] | [ Wang Mingjun, Han Guodong, Cui Guowen, et al. Effect of grazing intensity on productivity and diversity of meadow steppe[J]. Chinese Journal of Ecology, 2010, 29(5): 862-868. ] |
[39] | Mipam T, Zhong L L, Liu J Q, et al. Productive overcompensation of alpine meadows in response to yak grazing in the eastern Qinghai-Tibet Plateau[J]. Frontiers in Plant Science, 2019, 00925, doi.org/10.3389/fpls.2019.00925 |
[40] | Frank D A, Kuns M M, Guido D R. Consumer control of grassland plant production[J]. Ecology, 2002, 83: 602-606. |
/
〈 | 〉 |