Soil Resources

Soil nutrients and stoichiometric characteristics of the Elaeagnus angustifolia shelterbelt in the Hobq Desert

Expand
  • 1. College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
    2. Inner Mongolia Meteorological Institute, Hohhot 010051, Inner Mongolia, China
    3. Uxin Banner Mu Us Sandy Land Ecological Development Co., Ltd., Ordos 017300, Inner Mongolia, China

Received date: 2021-09-03

  Revised date: 2021-10-22

  Online published: 2022-03-30

Abstract

To investigate the soil nutrients and stoichiometric characteristics of the Elaeagnus angustifolia shelterbelt in the northeastern margin of the Hobq Desert, and to offer a theoretical basis for the development of desert shelterbelt, we studied the E. angustifolia shelterbelt with different forest ages (3 a, 9 a, 15 a ) using 30 m×30 m representative sample plots. The soil nutrient content of these plots were measured by stratified sampling of the 0-50 cm soil layer. The pH of different soil layers in the different forest ages had little fluctuation; however, the nutrient elements were significantly affected by forest age and soil depth. Nutrient content increased significantly with forest age, and decreased vertically along the soil profile, illustrating a surface accumulation phenomenon. Among nutrients, forest age had a great influence on available K, total P, and total K; at a forest age of 15 a, these nutrients increased by 152.2%, 58.0%, and 69.5%, respectively, compared with bare sandy land. The C:N, C:P, and N:P of the 0-50 cm soil layer across the different forest ages was 9.25-18.99, 4.78-5.96, and 0.31-0.63, respectively, and was affected by forest age and soil depth. The comprehensive stoichiometric analysis showed a remarkable improvement effect of the E. angustifolia shelterbelt on aeolian sandy soil in the northeastern margin of Hobq Desert, with the soil nutrient status mainly affected by the C and N. The mineralization ability of soil N was weak and nitrogen was poor. As such, nitrogen fertilizer should be appropriately applied in later management.

Cite this article

SHI Shiling,REN Xiaomeng,ZHANG Xiaowei,MENG Zhongju,WANG Tao . Soil nutrients and stoichiometric characteristics of the Elaeagnus angustifolia shelterbelt in the Hobq Desert[J]. Arid Zone Research, 2022 , 39(2) : 469 -476 . DOI: 10.13866/j.azr.2022.02.14

References

[1] 傅洁. 氮素和水分添加对油蒿群落土壤及植物养分状况的影响[D]. 北京: 北京林业大学, 2019.
[1] [ Fu Jie. Effects of Nitrogen and Water Addition on Soil and Plant Nutrients of Artemisia ordosica Community[D]. Beijing: Beijing Forestry University, 2019. ]
[2] 李珊珊, 耿增超, 姜林, 等. 秦岭火地塘林区土壤剖面碳氮垂直分布规律的研究[J]. 西北林学院学报, 2011, 26(4):1-6.
[2] [ Li Shanshan, Geng Zengchao, Jiang Lin, et al. Vertical distribution of carbon and nitrogen at Huoditang forest region in the Qinling Mountains[J]. Journal of Northwest Forestry University, 2011, 26(4):1-6. ]
[3] Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2010, 3(6):540-550.
[4] 董雪, 辛智鸣, 黄雅茹, 等. 乌兰布和沙漠典型灌木群落土壤化学计量特征[J]. 生态学报, 2019, 39(17):6247-6256.
[4] [ Dong Xue, Xin Zhiming, Huang Yaru, et al. Soil stoichiometry in typical shrub communities in the Ulan Buh Desert[J]. Acta Ecologica Sinica, 2019, 39(17):6247-6256. ]
[5] 庞圣江, 张培, 贾宏炎, 等. 桂西北不同森林类型土壤生态化学计量特征[J]. 中国农学通报, 2015, 31(1):17-23.
[5] [ Pang Shengjiang, Zhang Pei, Jia Hongyan, et al. Research on soil ecological stoichiometry under different forest types in Northwest Guangxi[J]. Chinese Agricultural Science Bulletin, 2015, 31(1):17-23. ]
[6] 倪晓薇. 喀斯特地区3种林分土壤养分分布特征研究[D]. 长沙: 中南林业科技大学, 2017.
[6] [ Ni Xiaowei. Soil Nutrients Status of Three Different Forest Types on Karst Area[D]. Changsha: Central South University of Forestry and Technology, 2017. ]
[7] 任悦. 沙地樟子松人工林叶片-枯落物-土壤C、N、P化学计量特征[D]. 北京: 北京林业大学, 2019.
[7] [ Ren Yue. Carbon, Nitrogen and Phosphorus Stoichiometric in Leaf-Little-Soil of Pinus sylvestris var. mongolica in Sandy Land[D]. Beijing: Beijing Forestry University, 2019. ]
[8] 杨升, 刘涛, 张华新, 等. 盐胁迫下沙枣幼苗的生长表现和生理特性[J]. 福建林学院学报, 2014, 34(1):64-70.
[8] [ Yang Sheng, Liu Tao, Zhang Huaxin, et al. Growth and physiological characteristics of Elaeagnus angustifolis L. under salt stress[J]. Journal of Fujian College of Forestry, 2014, 34(1):64-70. ]
[9] 武海雯, 杨秀艳, 王计平, 等. 沙枣改善盐碱土壤养分的研究进展[J]. 生态学杂志, 2019, 38(11):3527-3534.
[9] [ Wu Haiwen, Yang Xiuyan, Wang Jiping, et al. A review on the improvement of salt-affected soil nutrients by Elaeagnus angustifolia L.[J]. Chinese Journal of Ecology, 2019, 38(11):3527-3534. ]
[10] 陈孔飞, 张仁陟, 蔡立群, 等. 盐渍化对沙枣林土壤养分和酶活性的影响[J]. 国土与自然资源研究, 2020, 41(5):60-64.
[10] [ Chen Kongfei, Zhang Renzhi, Cai Liqun, et al. Effects of salinization on soil nutrients and enzyme activities in Elaeagnus Angustifolia forest[J]. Territory and Natural Resources Study, 2020, 41(5):60-64. ]
[11] 卢兴霞, 张超, 刘婷, 等. 盐碱地沙枣林不同生长期表层土壤化学性质[J]. 江苏农业科学, 2015, 43(4):324-326.
[11] [ Lu Xingxia, Zhang Chao, Liu Ting, et al. Surface soil chemical properties of different growth periods of Elaeagnus angustifolia forest in saline land[J]. Jiangsu Agricultural Sciences, 2015, 43(4):324-326. ]
[12] 刘正祥, 张华新, 杨秀艳, 等. NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性[J]. 生态学报, 2014, 34(2):326-336.
[12] [ Liu Zhengxiang, Zhang Huaxin, Yang Xiuyan, et al. Growth, and cationic absorption, transportation and allocation of Elaeagnus angustifolia seedlings under NaCl stress[J]. Acta Ecologica Sinica, 2014, 34(2):326-336. ]
[13] 魏琦, 武海雯, 刘正祥, 等. 盐胁迫下沙枣生物固氮能力及氮素分配研究[J]. 林业科学研究, 2017, 30(6):985-992.
[13] [ Wei Qi, Wu Haiwen, Liu Zhengxiang, et al. Biological nitrogen fixation ability and nitrogen distribution of Elaeagnus angustifolia under salt stress[J]. Forest Research, 2017, 30(6):985-992. ]
[14] 王慧, 解文斌, 刘宁, 等. 基于栽植沙枣的晋北盐碱地土壤改良处理组合研究[J]. 水土保持学报, 2016, 30(4):281-287.
[14] [ Wang Hui, Xie Wenbin, Liu Ning, et al. Study on different treatment combinations of soil amendments based on Elaeagnus angustifolia seedings planting in saline-alkali area of northern Shanxi Province[J]. Journal of Soil and Water Conservation, 2016, 30(4):281-287. ]
[15] 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2000.
[15] [ Bao Shidan. Soil Agrochemical Analysis[M]. 3rd Ed. Beijing: China Agriculture Press, 2000.
[16] 宁虎森, 罗青红, 吉小敏, 等. 新疆甘家湖梭梭林林地土壤养分、盐分的累积特征[J]. 东北林业大学学报, 2014, 42(9):83-87.
[16] [ Ning Husen, Luo Qinghong, Ji Xiaomin, et al. Characteristics of soil nutrient, salt accumulation of Ganjiahu Haloxylon ammodendron national nature reserve in Xinjiang[J]. Journal of Northeast Forestry University, 2014, 42(9):83-87. ]
[17] 董正武, 玉米提·哈力克, 李生宇, 等. 古尔班通古特沙漠西南缘柽柳沙包的土壤化学计量特征[J]. 生态学报, 2020, 40(20):7389-7400.
[17] [ Dong Zhengwu, Umut Halik, Li Shengyu, et al. Soil stoichiometric characteristics of Tamarisk cones in the Southwest margin of Gurbantunggut Desert[J]. Acta Ecologica Sinica, 2020, 40(20):7389-7400. ]
[18] 张珂, 苏永中, 王婷, 等. 荒漠绿洲区不同种植年限人工梭梭林土壤化学计量特征[J]. 生态学报, 2016, 36(11):3235-3243.
[18] [ Zhang Ke, Su Yongzhong, Wang Ting, et al. Soil stoichiometry characteristics of Haloxylon ammodendron with different plantation age in the desert-oasis ecotone, north China[J]. Acta Ecologica Sinica, 2016, 36(11):3235-3243. ]
[19] 董生健, 何小谦. 黄土丘陵区不同林龄人工刺槐林下植被及土壤系统演变特征[J]. 水土保持通报, 2016, 36(5):20-27.
[19] [ Dong Shengjian, He Xiaoqian. Evolution of undergrowth vegetation and soil properties with development of artificial Robinia pseudoacacia in loess hilly region[J]. Bulletin of Soil and Water Conservation, 2016, 36(5):20-27. ]
[20] 陶冶, 张元明. 古尔班通古特沙漠4种草本植物叶片与土壤的化学计量特征[J]. 应用生态学报, 2015, 26(3):659-665.
[20] [ Tao Ye, Zhang Yuanming. Leaf and soil stoichiometry of four herbs in the Gurbantunggut Desert, China[J]. Chinese Journal of Applied Ecology, 2015, 26(3):659-665. ]
[21] 黄雅茹, 郝玉光, 董礼隆, 等. 乌兰布和沙漠东北缘典型固沙林土壤养分特征研究[J]. 西北林学院学报, 2018, 33(2):1-9.
[21] [ Huang Yaru, Hao Yuguang, Dong Lilong, et al. Comparative study on soil chemical properties of typical sand-fixing forests in the Ulan Buh Desert[J]. Journal of Northwest Forestry University, 2018, 33(2):1-9. ]
[22] 朱凯, 李玉灵, 徐学华, 等. 不同林龄刺槐林对冀东铁尾矿客土土壤养分含量的影响[J]. 河北农业大学学报, 2016, 39(1):69-74.
[22] [ Zhu Kai, Li Yuling, Xu Xuehua, et al. Effects of Robinia pseudoacacia forest with different ages on nutrient content in Jidong iron tailings[J]. Journal of Hebei Agricultural University, 2016, 39(1):69-74. ]
[23] Esteban G, Robert B. The distribution of soil nutrients with depth: Global patterns and the imprint of plants[J]. Biogeochemistry, 2001, 53(1):51-77.
[24] 冼伟光, 周丽, 唐洪辉, 等. 不同林龄针阔混交林土壤生态化学计量特征[J]. 广东林业科技, 2015, 31(1):1-6.
[24] [ Xian Weiguang, Zhou Li, Tang Honghui, et al. Soil ecological stoichiometry of conifer-broadleaved plantations of different age in southern subtropical region[J]. Guangdong Forestry Science and Technology, 2015, 31(1):1-6. ]
[25] Zeng Q C, Xin L I, Dong Y H, et al. Ecological stoichiometry characteristics and physical-chemical properties of soils at different latitudes on the loess plateau[J]. Journal of Natural Resources, 2015, 30(5):870-879.
[26] 朱秋莲. 黄土丘陵区不同植被带立地条件对植物-枯落物-土壤生态化学计量特征的影响[D]. 杨凌: 西北农林科技大学, 2013.
[26] [ Zhu Qiulian. The Effects of Slope Condition on Leaf-Little-Soil Stoichiometry on the Hilly-Gully Area of Loess Plateau[D]. Yangling: Northwest Agriculture and Forestry University, 2013. ]
[27] 杨霞, 陈丽华, 郑学良. 不同林龄油松人工林土壤碳、氮和磷生态化学计量特征[J]. 中国水土保持科学, 2021, 19(2):108-116.
[27] [ Yang Xia, Chen Lihua, Zheng Xueliang. Ecological stoichiometry characterization of soil carbon, nitrogen and phosphorus of Pinus tabuliformis plantations at different stand ages[J]. Science of Soil and Water Conservation, 2021, 19(2):108-116. ]
[28] 汪宗飞, 郑粉莉. 黄土高原子午岭地区人工油松林碳氮磷生态化学计量特征[J]. 生态学报, 2018, 38(19):6870-6880.
[28] [ Wang Zongfei, Zheng Fenli. C, N, and P stoichiometric characteristics of Pinus tabulaeformis plantation in the Ziwuling Region of the Loess Plateau[J]. Acta Ecologica Sinica, 2018, 38(19):6870-6880. ]
[29] 魏亚娟, 党晓宏, 汪季, 等. 不同演化阶段白刺灌丛沙堆土壤生态化学计量特征[J]. 水土保持学报, 2021, 35(2):377-384.
[29] [ Wei Yajuan, Dang Xiaohong, Wang Ji, et al. Characteristics of the soil ecological stoichiometry of Nitraria tangutorun nebkhas during different succession stages[J]. Journal of Soil and Water Conservation, 2021, 35(2):377-384. ]
[30] 张光德, 赵传燕, 戎战磊, 等. 祁连山中部不同植被类型土壤生态化学计量特征研究[J]. 兰州大学学报(自然科学版), 2019, 55(4):533-540.
[30] [ Zhang Guangde, Zhao Chuanyan, Rong Zhanlei, et al. Ecological stoichiometry of soils with different vegetation types in the middle part of the Qilian Mountains[J]. Journal of Lanzhou University (Natural Science), 2019, 55(4):533-540. ]
[31] Bui E N, Henderson B L. C: N: P stoichiometry in Australian soils with respect to vegetation and environmental factors[J]. Plant and Soil, 2013, 373(1-2):553-568.
[32] 朱潮, 武利玉, 张崇庆, 等. 兰州市北山典型侧柏人工林分叶片与土壤生态化学计量特征[J]. 水土保持学报, 2021, 35(4):361-368.
[32] [ Zhu Chao, Wu Liyu, Zhang Chongqing, et al. Ecological stoichiometry characteristics of leaves and soil in a typical Platycladus orientalis plantation in Beishan of Lanzhou city[J]. Journal of Soil and Water Conservation, 2021, 35(4):361-368. ]
Outlines

/