Weather and Climate

Analysis of tempo-spatial characteristics and trends of precipitation in the Aral Sea Basin

Expand
  • 1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, Jiangsu, China
    2. International River Research Centre, Hohai University, Nanjing 211100, Jiangsu, China
    3. Business School of Hohai University, Nanjing 211100, Jiangsu, China
    4. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China

Received date: 2021-07-16

  Revised date: 2021-09-07

  Online published: 2022-03-30

Abstract

In this study, we extracted regional precipitation data of the general Aral Sea Basin in Central Asia from the Climate Research Unit (CRU) from 1945 to 2019. Simultaneously, we also calculated the spatial and temporal characteristics of annual precipitation change using the climate trend rate method. We first depicted the overall spatial distribution of the climate trend rate, then we used concentration period, concentration degree, and sharing entropy methods to describe the precipitation distribution, and separately depicted the spatial and temporal precipitation distribution. Additionally, we calculated the spatial and temporal change in precipitation complexity using the sample entropy and permutation entropy methods, and demonstrated these results graphically. Trends in the new series of concentration period, concentration degree, sharing entropy, sample entropy, and permutation entropy were tested using the Mann-Kendall method. Generally, the annual precipitation in the Aral Sea Basin in Central Asia remained largely unchanged, whereas precipitation showed a slight upward trend. From the perspective of spatial distribution, precipitation increased significantly in the northwest and central east of the Aral Sea Basin in Central Asia. Furthermore, precipitation was mainly concentrated in early and mid-February for each year. The general precipitation distribution showed a slightly homogenized trend, whereas the annual precipitation distribution was more uniform in the west, north, and east of the Aral Sea Basin, and more concentrated in the middle and south of the Aral Sea Basin. Moreover, the sample entropy and permutation entropy values were higher in the north, west, and east, but lower in the south and middle of the Aral Sea Basin. Altogether, the results demonstrate that the complexity of the precipitation series was relatively high in the north, west, and east, but relatively low in the south and middle of the Aral Sea Basin in Central Asia. The complexity of the precipitation series in the whole basin generally showed an upward trend. More specifically, the complexity of the precipitation series in the north and south of the basin showed a significant downward trend, whereas in the west, middle, and east of the basin, it showed a significant upward trend. Our results illustrate the variation in precipitation characteristics in this basin over the past 75 years, and provide a scientific basis for the development and utilization of water resources in the Aral Sea Basin in Central Asia.

Cite this article

WANG Haoxuan,HUANG Feng,GUO Lidan,ZHONG Ruisen . Analysis of tempo-spatial characteristics and trends of precipitation in the Aral Sea Basin[J]. Arid Zone Research, 2022 , 39(2) : 359 -367 . DOI: 10.13866/j.azr.2022.02.03

References

[1] 徐利岗, 杜历, 姚海娇, 等. 中亚干旱区降水时空变化特征及趋势分析[J]. 干旱区资源与环境, 2015, 29(11):121-127.
[1] [ Xu Ligang, Du Li, Yao Haijiao, et al. Spatiotemporal variations and tendency of annual precipitation in the arid Central Asia[J]. Journal of Arid Land Resources and Environment, 2015, 29(11):121-127. ]
[2] Lioubimtseva E, Colea R, Adams J M, et al. Impacts of climate and land-cover changes in arid lands of Central Asia[J]. Journal of Arid Environments, 2005, 62(11):285-308.
[3] Lioubimtseva E, Henebry G M, Climate and environmental change in arid Central Asia: Impacts, vulnerability and adaptions[J]. Journal of Arid Environments, 2009, 73(11):963-977.
[4] 邓铭江, 龙爱华. 中亚各国在咸海流域水资源问题上的冲突与合作[J]. 冰川冻土, 2011, 33(6):1376-1390.
[4] [ Deng Mingjiang, Long Aihua. Water resources issue among the Central Asia countries around the Aral Sea: Conflict and cooperation[J]. Journal of Glaciology and Geocryology, 2011, 33(6):1376-1390. ]
[5] 邓铭江, 龙爱华. 咸海流域水文水资源演变与咸海生态危机出路分析[J]. 冰川冻土, 2011, 33(6):1363-1375.
[5] [ Deng Mingjiang, Long Aihua. Evolution of hydrologic and water resources and ecological crisis in the Aral Sea Basin[J]. Journal of Glaciology and Geocryology, 2011, 33(6):1363-1375. ]
[6] Wurtsbaugh W A, Miller C, Null S E, et al. Decline of the world’s saline lakes[J]. Nature Geoscience, 2017, 10(11):816-821.
[7] Micklin P. The Aral Sea disaster[J]. Annual Review of Earth and Planetary Sciences, 2007, 35:47-72.
[8] 陈起川, 夏自强, 郭利丹, 等. 中亚湖泊地区降水量变化特征及趋势分析[J]. 水电能源科学, 2012, 30(6):13-16.
[8] [ Chen Qichuan, Xia Ziqiang, Guo Lidan, et al. Variation characteristics and trend analysis of precipitation in Central-Asia lake zones[J]. Water Resources and Power, 2012, 30(6):13-16. ]
[9] 杨雪雯, 王宁练, 陈安安, 等. 中亚干旱区咸海面积变化与人类活动及气候变化的关联研究[J]. 冰川冻土, 2020, 42(2):681-692.
[9] [ Yang Xuewen, Wang Ninglian, Chen An’an, et al. The relationship between area variation of the Aral Sea Basin in the arid Central Asia and human activities and climate change[J]. Journal of Glaciology and Geocryology, 2020, 42(2):681-692. ]
[10] 昝婵娟, 黄粤, 李均力, 等. 1990—2019年咸海水量平衡及其影响因素分析[J]. 湖泊科学, 2021, 33(4):1265-1275.
[10] [ Zan Chanjuan, Huang Yue, Li Junli, et al. Analysis of water balance in Aral Sea and the influencing factors from 1990 to 2019[J]. Journal of Lake Sciences, 2021, 33(4):1265-1275. ]
[11] Wegerich K, Van R D, Soliev I, et al. Water security in the Syr Darya Basin[J]. Water, 2015, 7(9):4657-4684.
[12] Jiang L, Jiapaer G, Bao A, et al. Assessing land degradation and quantifying its drivers in the Amudarya River Delta[J]. Ecological Indicators, 2019, 107:105595.
[13] Schar C, Vasilina L, Pertziger F, et al. Seasonal runoff forecasting using precipitation from meteorological data assimilation systems[J]. Journal of Hydrometeorology, 2004, 5(5):959-973.
[14] 邓铭江, 龙爱华, 章毅, 等. 中亚五国水资源及其开发利用评价[J]. 地球科学进展, 2010, 25(12):1347-1356.
[14] [ Deng Mingjiang, Long Aihua, Zhang Yi, et al. Assessment of water resources development and utilization in the five Central Asia countries[J]. Advances in Earth Science, 2010, 25(12):1347-1356. ]
[15] 黄秋霞, 赵勇, 何清. 基于CRU资料的中亚地区气候特征[J]. 干旱区研究, 2013, 30(3):396-403.
[15] [ Huang Qiuxia, Zhao Yong, He Qing. Climate characteristics in Central Asia based on CRU data[J]. Arid Zone Research, 2013, 30(3):396-403. ]
[16] 刘斌涛, 陶和平, 宋春风, 等. 1960—2009年中国降雨侵蚀力的时空变化趋势[J]. 地理研究, 2013, 32(2):245-256.
[16] [ Liu Bintao, Tao Heping, Song Chunfeng, et al. Temporal and spatial variations of rainfall erosivity in China during 1960 to 2009[J]. Geographical Research, 2013, 32(2):245-256. ]
[17] 李斌, 王莉. 基于降水集中度和集中期的关中地区降水时空变化特征分析[J]. 陕西水利, 2020, 89(2):36-41.
[17] [ Li Bin, Wang Li. Analysis on spatial and temporal variation characteristics of precipitation in Guanzhong Area based on precipitation concentration ratio and precipitation concentration period[J]. Shaanxi Water Resources, 2020, 89(2):245-256. ]
[18] 张天宇, 程炳岩, 王记芳, 等. 华北雨季降水集中度和集中期的时空变化特征[J]. 高原气象, 2007, 26(4):843-853.
[18] [ Zhang Tianyu, Cheng Bingyan, Wang Jifang, et al. Temporal and spatial change characteristics of precipitation concentration degree (PCD) and precipitation concentration period (PCP) over north China in rainy reason[J]. Plateau Meteorology, 2007, 26(4):843-853. ]
[19] 张欣然. 辽东暴雨洪水易发区降水集中度及集中期时空变化特征分析[J]. 水利规划与设计, 2020, 33(6):74-78, 107.
[19] [ Zhang Xinran. Analysis of spatial and seasonal variation of precipitation concentration degree and period in storm flood prone zones in eastern Liaoning province[J]. Water Resources Planning and Design, 2020, 33(6):74-78, 107. ]
[20] 付浩龙, 刘凤丽, 李亚龙, 等. 降水集中度分析及其在水稻灌溉决策中的应用——以湖北省漳河灌区为例[J]. 水利与建筑工程学报, 2020, 18(4):35-40.
[20] [ Fu Haolong, Liu Fengli, Li Yalong, et al. Rice irrigation decision-making based on precipitation concentration: A case study of Zhanghe irrigation district in Hubei Province[J]. Journal of Water Resources and Architectural Engineering, 2020, 18(4):35-40. ]
[21] 周文婧, 夏自强, 黄峰, 等. 巴尔喀什湖流域降水量及其年内分配的变化特征[J]. 水电能源科学, 2013, 31(6):10-13.
[21] [ Zhou Wenjing, Xia Ziqiang, Huang Feng, et al. Variation characteristics of precipitation and its annual distribution in Balkhash Lake Basin[J]. Water Resources and Power, 2013, 31(6):10-13. ]
[22] Huang F, Chunyu X Z, Wang Y K, et al. Investigation into multi-temporal scale complexity of stream flows and water levels in the Poyang Lake basin, China[J]. Entropy, 2017, 19(2):67-67.
[23] 王远坤, 李建, 王栋. 基于多尺度熵理论的葛洲坝水库对长江干流径流影响研究[J]. 水资源保护, 2015, 31(5):14-18.
[23] [ Wang Yuankun, Li Jian, Wang Dong. Research on impacts of Gezhouba Reservoir on Yangtze River main stream runoff based on multi-scale entropy theory[J]. Water Resources Protection, 2015, 31(5):14-18. ]
[24] 孙东永, 黄强, 张莉. 基于排列熵和小波分析的渭河降水突变研究[J]. 西北农林科技大学学报(自然科学版), 2015, 43(4):229-234.
[24] [ Sun Dongyong, Huang Qiang, Zhang Li. Precipitation mutation of Wei River based on permutation entropy and wavelet analysis[J]. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(4):229-234. ]
[25] 侯威, 封国林, 董文杰, 等. 利用排列熵检测近40年华北地区气温突变的研究[J]. 物理学报, 2006, 40(5):2663-2668.
[25] [ Hou Wei, Feng Guolin, Dong Wenjie, et al. A technique for distinguishing dynamical species in the temperature time series of north China[J]. Acta Physica Sinica, 2006, 40(5):2663-2668. ]
[26] 何兵, 高凡, 闫正龙, 等. 叶尔羌河径流演变规律与变异特征[J]. 水资源与水工程学报, 2018, 29(1):38-43, 49.
[26] [ He Bing, Gao Fan, Yan Zhenglong, et al. Evolution and variation of runoff in Yarkant River[J]. Journal of Water Resources & Water Engineering, 2018, 29(1):38-43, 49. ]
[27] 曹洁萍, 迟道才, 武立强, 等. Mann-Kendall检验方法在降水趋势分析中的应用研究[J]. 农业科技与装备, 2008, 29(5):35-37, 40.
[27] [ Cao Jieping, Chi Daocai, Wu Liqiang, et al. Mann-Kendall examination and application in the analysis of precipitation trend[J]. Agricultural Science & Technology and Equipment, 2008, 29(5):35-37, 40. ]
[28] 黄峰, 夏自强, 王远坤. 长江上游枯水期及10月径流情势分析[J]. 河海大学学报(自然科学版), 2010, 38(2):129-133.
[28] [ Huang Feng, Xia Ziqiang, Wang Yuankun. Runoff regimes of upstream Yangtze River in dry season and October[J]. Journal of Hohai University (Natural Sciences), 2010, 38(2):129-133. ]
[29] 张茜, 梁秀娟, 肖长来. 多值粗粒化Lempel-Ziv算法在吉林省降水变化复杂度分析中的应用[J]. 应用基础与工程科学学报, 2017, 25(1):28-36.
[29] [ Zhang Qian, Liang Xiujuan, Xiao Changlai. Application of multiple coarse-grained Lempel-Ziv algorithm to analyze complexity of precipitation in Jilin Province[J]. Journal of Basic Science and Engineering, 2017, 25(1):28-36. ]
[30] Chen F H, Huang W, Jin L Y, et al. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J]. Science China Earth Sciences, 2011, 54(12):1812-1821.
[31] 陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考[J]. 干旱区地理, 2012, 35(1):1-9.
[31] [ Chen Yaning, Yang Qing, Luo Yi, et al. Ponder on the issues of water resources in the arid region of northwest China[J]. Arid Land Geography, 2012, 35(1):1-9. ]
[32] 胡汝骥, 姜逢清, 王亚俊, 等. 中亚(五国)干旱生态地理环境特征[J]. 干旱区研究, 2014, 31(1):1-12.
[32] [ Hu Ruji, Jiang Fengqing, Wang Yajun, et al. Arid ecological and geographical conditions in five countries of Central Asia[J]. Arid Zone Research, 2014, 31(1):1-12. ]
[33] 郭利丹, 周海炜, 夏自强, 等. 丝绸之路经济带建设中的水资源安全问题及对策[J]. 中国人口·资源与环境, 2015, 25(5):114-121.
[33] [ Guo Lidan, Zhou Haiwei, Xia Ziqiang, et al. Water resources security and its countermeasure suggestions in building Silk Road Economic Belt[J]. China Population, Resources and Environment, 2015, 25(5):114-121. ]
[34] 付强, 李铁男, 李天霄, 等. 基于近似熵理论的三江平原月降水量空间复杂性分析[J]. 水土保持研究, 2015, 22(2):113-116, 122.
[34] [ Fu Qiang, Li Tienan, Li Tianxiao, et al. Analysis of spatial complexity of monthly precipitation in Sanjiang Plain based on approximate entropy[J]. Research of Soil and Water Conservation, 2015, 22(2):113-116, 122. ]
Outlines

/