Effects of different levels of nitrogen addition on leaf-stem sizes of Malus sieversii seedlings

Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. College of Life Sciences, Shihezi University, Shihezi 832003, Xinjiang, China
    3. Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, College of Life Sciences, Anqing Normal University, Anqing 246133, Anhui, China

Received date: 2021-05-09

  Revised date: 2021-07-07

  Online published: 2022-01-24

Abstract

Malus sieversii is one of the ancestors of all cultivated apple trees in the world; therefore, it is regarded as a strategic genetic resource in China. However, its population has become seriously degraded. To conserve M. sieversii, it is necessary to understand the response of the plant to nitrogen addition. To determine the response of M. sieversii to nitrogen addition and provide a theoretical basis for population recovery, the twig traits of M. sieversii seedlings treated with different levels of nitrogen were analyzed using one-way ANOVA and allometric analysis. The N20 treatment promoted significant stem growth and significantly reduced the LAR and LAMR of M. sieversii; in contrast, the N40 treatment significantly reduced the LI of M. sieversii. The variation of branches and leaves of M. sieversii under nitrogen addition was not reflected in the biomass, but it was reflected in the morphological index. The low-and medium-nitrogen treatment groups tended to grow smaller and lighter leaves. The variation according to high-nitrogen treatment differed from that of the low-and medium-nitrogen groups. Appropriate addition of nitrogen fertilizer can improve the relationship between leaves and stem growth. In the process of planting seedlings, excessive application of nitrogen fertilizer should be avoided and fertilizer should be added appropriately. In the process of original habitat transplantation, the soil difference between habitats should be considered and fertilizer should be used in a targeted manner.

Cite this article

HUA Zhaohui,TAO Ye,YAN Jingming,ZHOU Xiaobing,ZHANG Jing,ZHANG Yuanming . Effects of different levels of nitrogen addition on leaf-stem sizes of Malus sieversii seedlings[J]. Arid Zone Research, 2022 , 39(1) : 210 -219 . DOI: 10.13866/j.azr.2022.01.20

References

[1] 林培钧, 崔乃然. 天山野果林资源——伊犁野果林综合研究[M]. 北京: 中国林业出版社, 2000.
[1] [Lin Peijun, Cui Nairan. Resources of Wild Fruit Forest in Tianshan: Comprehensive Study on Wild Fruit Forest in Yili[M]. Beijing: China Forestry Publishing House, 2000. ]
[2] Wang N, Jiang S H, Zhang Z Y, et al. Malus sieversii: The origin, flavonoid synjournal mechanism, and breeding of red-skinned and red-fleshed apples[J]. Horticulture Research, 2018, 5: 70.
[3] Zhang H X, Li X S, Wang J C, et al. Insights into the aridification history of central asian mountains and international conservation strategy from the endangered wild apple tree[J]. Journal of Biogeography, 2020, 48(2): 1-13.
[4] Shan Q J, Wang Z K, Ling H B, et al. Unreasonable human disturbance shifts the positive effect of climate change on tree-ring growth of Malus sieversii in the origin area of world cultivated apples[J]. Journal of Cleaner Production, 2021, 287: 1-14.
[5] 李宇秀. 张宏祥. 死亡植株对新疆野苹果种群遗传多样性的影响[J]. 干旱区研究, 2018, 35(1): 165-170.
[5] [Li Yuxiu, Zhang Hongxiang. Effect of death individual on the genetic diversity of Malus sieversii population[J]. Arid Zone Research, 2018, 35(1): 165-170. ]
[6] 傅立国. 中国植物红皮书[M]. 北京: 科学出版社, 1993.
[6] [Fu Liguo. China Plant Red Data Book[M]. Beijing: Science Press, 1993. ]
[7] 杨力, 王满堂, 陈晓萍, 等. 亚热带常绿林不同冠层小枝叶面积-叶生物量关系研究[J]. 生态学报, 2020, 40(21): 7745-7754.
[7] [Yang Li, Wang Mantang, Chen Xiaoping, et al. Relationship between leaf area and leaf biomass of different canopies in subtropical evergreen forest[J]. Acta Ecologica Sinica, 2020, 40(21): 7745-7754. ]
[8] 商侃侃, 张希金, 宋坤. 上海辰山植物园不同生活型木本植物枝叶大小关系的比较[J]. 植物研究, 2020, 40(5): 1-7.
[8] [Shang Kankan, Zhang Xijin, Song Kun. Variation of stem-leaf size relationship of woody plants among different lifeforms in Shanghai Chenshan botanical garden[J]. Bulletin of Botanical Research, 2020, 40(5): 1-7. ]
[9] Corner E J H. The durian theory or the origin of the modern tree[J]. Annals of Botany, 1949, 13(52): 367-414.
[10] 章建红, 史青茹, 许洺山, 等. 浙江天童木本植物corner法则的检验:个体密度的影响[J]. 植物生态学报, 2014, 38(7): 655-664.
[10] [Zhang Jianhong, Shi Qingru, Xu Mingshan, et al. Testing of Corner’s rules across woody plants in Tiantong region, Zhejiang Province: Effects of individual density[J]. Chinese Journal of Plant Ecology, 2014, 38(7): 655-664. ]
[11] Sun S C, Jin D M, Shi P L. The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: An invariant allometric scaling relationship[J]. Annals of Botany, 2006, 97(1): 97-107.
[12] Yan Z B, Eziz A, Tian D, et al. Biomass allocation in response to nitrogen and phosphorus availability: Insight from experimental manipulations of Arabidopsis thaliana[J]. Frontiers in Plant Science, 2019, 10: 598.
[13] 李曼, 郑媛, 郭英荣, 等. 武夷山不同海拔黄山松枝叶大小关系[J]. 应用生态学报, 2017, 28(2): 537-544.
[13] [Li Man, Zheng Yuan, Guo Yingrong, et al. Scaling relationships between twig size and leaf size of Pinus hwangshanensis along an altitudinal gradient in Wuyi Mountains, China[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 537-544. ]
[14] 彭福田, 姜远茂, 顾曼如, 等. 氮素对苹果果实内源激素变化动态与发育进程的影响[J]. 植物营养与肥料学报, 2003, 10(2): 208-213.
[14] [Peng Futian, Jiang Yuanmao, Gu Manru, et al. Effect of nitrogen on apple fruit hormone changing trends and development[J]. Journal of Plant Nutrition and Fertilizers, 2003, 10(2): 208-213. ]
[15] Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends in Plant Science, 1998, 3(10): 389-395.
[16] 张婉婷, 单立山, 李毅, 等. 氮添加与降雨变化对红砂幼苗非结构性碳水化合物的影响[J]. 生态学杂志, 2020, 39(3): 803-811.
[16] [Zhang Wanting, Shan Lishan, Li Yi, et al. Effects of nitrogen addition and precipitation change on non-structural carbohydrates in Reaumuria soongorica seedlings[J]. Chinese Journal of Ecology, 2020, 39(3): 803-811. ]
[17] 王凯, 雷虹, 夏扬, 等. 杨树幼苗非结构性碳水化合物对增加降水和氮添加的响应[J]. 应用生态学报, 2017, 28(2): 399-407.
[17] [Wang Kai, Lei Hong, Xia Yang, et al. Responses of non-structural carbohydrates of poplar seedlings to increased precipitation and nitrogen addition[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 399-407. ]
[18] 李德军, 莫江明, 方运霆, 等. 模拟氮沉降对三种南亚热带树苗生长和光合作用的影响[J]. 生态学报, 2004, 24(5): 876-882.
[18] [Li Dejun, Mo Jiangming, Fang Yunting, et al. Effects of simulated nitrogen deposition on growth and photosynjournal of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings[J]. Acta Ecologica Sinica, 2004, 24(5): 876-882. ]
[19] 闫慧, 吴茜, 丁佳, 等. 不同降水及氮添加对浙江古田山4种树木幼苗光合生理生态特征与生物量的影响[J]. 生态学报, 2013, 33(14): 4226-4236.
[19] [Yan Hui, Wu Qian, Ding Jia, et al. Effects of precipitation and nitrogen addition on photosynthetically ecophysiological characteristics and biomass of four tree seedlings in Gutian Mountain, Zhejiang Province, China[J]. Acta Ecologica Sinica, 2013, 33(14): 4226-4236. ]
[20] 裴昊斐, 高卫东, 方娇阳, 等. 模拟氮沉降对一年生香椿幼苗生长和光合特性的影响[J]. 中国生态农业学报, 2019, 27(10): 1546-1552.
[20] [Pei Haofei, Gao Weidong, Fang Jiaoyang, et al. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of one-year-old Toona sinensis seedlings[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1546-1552. ]
[21] 李德军, 莫江明, 方运霆, 等. 氮沉降对森林植物的影响[J]. 生态学报, 2003, 23(9): 1891-1900.
[21] [Li Dejun, Mo Jiangming, Fang Yunting, et al. Impact of nitrogen deposition on forest plants[J]. Acta Ecologica Sinica, 2003, 23(9): 1891-1900. ]
[22] 苏志豪, 李文军, 曹秋梅, 等. 新疆野苹果的种群年龄结构与数量动态[J]. 干旱区研究, 2019, 36(5): 1153-1160.
[22] [Su Zhihao, Li Wenjun, Cao Qiumei, et al. Age composition and quantitative dynamic status of Malus sieversii population[J]. Arid Zone Research, 2019, 36(5): 1153-1160. ]
[23] 玛孜依热阿·努尔海拉提, 陶冶, 周晓兵, 等. 新疆野苹果群落表层土壤化学计量特征[J]. 生态学杂志, 2019, 38(9): 2638-2647.
[23] [Ma Zi e re a Nuerhailati, Tao Ye, Zhou Xiaobing, et al. Stoichiometry of topsoil in Malus sieversii community in Xinjiang, China[J]. Chinese Journal of Ecology, 2019, 38(9): 2638-2647. ]
[24] 李锦隆, 王满堂, 李涵诗, 等. 冠层高度对江西69种阔叶树小枝单叶生物量与出叶强度关系的影响[J]. 林业科学, 2021, 57(2): 62-71.
[24] [Li Jinlong, Wang Mantang, Li Hanshi, et al. Effects of canopy height on the relationship between individual leaf mass and leafing intensity of 69 broad leaved trees in Jiangxi Province[J]. Scientia Silvae Sinicae, 2021, 57(2): 62-71. ]
[25] 魏圆慧, 王志鑫, 梁文召, 等. 胡杨枝叶功能性状对地下水位梯度的响应与适应[J]. 西北植物学报, 2020, 40(6): 1043-1051.
[25] [Wei Yuanhui, Wang Zhixin, Liang Wenzhao, et al. Response and adaptation of twig-leaf functional traits of Populus euphratica to groundwater gradients[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(6): 1043-1051. ]
[26] 何家莉, 王金牛, 周天阳, 等. 发育阶段和海拔对岷江源区陇蜀杜鹃小枝功能性状及生物量分配的影响[J]. 应用生态学报, 2020, 31(12): 4027-4034.
[26] [He Jiali, Wang Jinniu, Zhou Tianyang, et al. Effects of growth stage and altitude on twig functional traits and biomass allocation of Rhododendron przewalskii in the headwater region of Minjiang River, China[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4027-4034. ]
[27] 彭钟通, 林佳娜, 刘丽, 等. 水氮耦合对辣木生长特性的影响[J]. 生态学杂志, 2021, 40(2): 363-372.
[27] [Peng Zhongtong, Lin Jiana, Liu Li, et al. The coupling effects of water and nitrogen addition on the growth characteristics of Moringa oleifera[J]. Chinese Journal of Ecology, 2021, 40(2): 363-372. ]
[28] Messier J, Messier J, McGill B J, et al. Interspecific integration of trait dimensions at local scales: The plant phenotype as an integrated network[J]. Journal of Ecology, 2017, 105(6): 1775-1790.
[29] 胡耀升, 么旭阳, 刘艳红. 长白山森林不同演替阶段比叶面积及其影响因子[J]. 生态学报, 2015, 35(5): 1480-1487.
[29] [Hu Yaosheng, Yao Xuyang, Liu Yanhong. Specific leaf area and its influencing factors of forests at different succession stages in Changbai Mountains[J]. Acta Ecologica Sinica, 2015, 35(5): 1480-1487. ]
[30] Sun J, Wang M T, Lyu M, et al. Stem diameter (and not length) limits twig leaf biomass[J]. Frontiers in Plant Science, 2019, 10: 185.
[31] Feng X X, An Y Y, Gao J J, et al. Photosynthetic responses of canola to exogenous application or endogenous overproduction of 5-Aminolevulinic Acid (ALA) under various nitrogen levels[J]. Plants, 2020, 9(11): 1-14.
[32] Nakaji T, Fukami M, Dokiya Y, et al. Effects of high nitrogen load on growth, photosynjournal and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings[J]. Trees, 2001, 15(8): 453-461.
[33] Nakaji T, Takenaga S, Kuroha M, et al. Photosynthetic response of Pinus densiflora seedlings to high nitrogen load[J]. Environmental Sciences, 2002, 9(4): 269-282.
[34] Zhang M H, Sun D Y, Niu Z R, et al. Effects of combined organic/inorganic fertilizer application on growth, photosynthetic characteristics, yield and fruit quality of Actinidia chinesis cv ‘Hongyang’[J]. Global Ecology and Conservation, 2020, 22: 1-9.
[35] 曾郅玮, 赵世杰, 鲜骏仁, 等. 长期增温对树线交错带岷江冷杉幼苗异龄叶大小与出叶强度关系的影响[J]. 生态学报, 2021, 41(14): 1-10.
[35] [Zeng Zhiwei, Zhao Shijie, Xian Junren, et al. Long-term warming effects on relationship between leaf size and leafing intensity of Abies faxoniana seedlings in the treeline ecotone[J]. Acta Ecologica Sinica, 2021, 41(14): 1-10. ]
Outlines

/