Effect of water on nitrogen mineralization in degraded succession of Gahai Wetland

Expand
  • College of Forestry, Gansu Agricultural University, Lanzhou 730070, Gansu, China

Received date: 2021-04-28

  Revised date: 2021-06-01

  Online published: 2022-01-24

Abstract

Moisture is the main regulatory factor of nitrogen mineralization processes in wetland soils, where it also plays an important role in nitrogen circulation. Using Gannan Gahai wetland as study area, four degradation gradients (nondegraded, UD; slightly degraded, LD; moderately degraded, MD; and severely degraded, HD), and four field water holding capacity(20% FC, 40% FC, 60% FC and 80% FC)—were established, and the nitrogen mineralization characteristics of the wetland soil in the 0-10 cm soil layer were measured by aerobic incubation for 49 days. The results showed that (1) under various water conditions, the ammoniation, nitrification, and net nitrogen mineralization rates increased at first, and then decreased with the increase of incubation time. (2) With the increase in water content, the average value of soil net nitrogen mineralization initially increased and then it decreased; at 60% FC, the value in degraded soil was 34.91-44.94 mg·kg-1, compared with 20% FC, 40% FC, and 80% FC, it was 22.31-30.29 mg·kg-1、10.91-19.84 mg·kg-1、8.57-19.50 mg·kg-1, respectively. (3) The mean value of net nitrogen mineralization and its corresponding rate decreased with the increasing level of wetland degradation. An adequate amount of moisture favors soil nitrogen mineralization, while excessive moisture is unfavorable to this process and, at the same time, wetland degradation reduces it.

Cite this article

SONG Liangcui,MA Weiwei,LI Guang,LONG Yongchun,CHANG Wenhua . Effect of water on nitrogen mineralization in degraded succession of Gahai Wetland[J]. Arid Zone Research, 2022 , 39(1) : 165 -175 . DOI: 10.13866/j.azr.2022.01.17

References

[1] Nacry P, Eléonore Bouguyon, Gojon A. Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource[J]. Plant and Soil, 2013, 370(1-2): 1-29.
[2] 任雨佳, 刘夏琳, 王惠玲, 等. 北方农牧交错带赖草草地土壤氮矿化对不同放牧强度的响应[J]. 草地学报, 2020, 28(2): 328-337.
[2] [Ren Yujia, Liu Xialin, Wang Huiling, et al. Response of soil net Nitrogen mineralization Rates to different grazing intensities in Leymus secalinus communities of the Agro-pastoral Ecotone of Northern China[J]. Acta Grasslanda, 2020, 28(2): 328-337. ]
[3] Lang M, Cai Z C, Mary B, et al. Land-use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils[J]. Plant and Soil, 2010, 334(1-2): 377-389.
[4] Xu Y, Li L, Wang Q, et al. The pattern between nitrogen mineralization and grazing intensities in an Inner Mongolian typical steppe[J]. Plant and Soil, 2007, 300(1-2): 289-300.
[5] 杨小红, 董云社, 齐玉春, 等. 锡林河流域羊草草原暗栗钙土矿质氮动态变化[J]. 地理研究, 2005, 24(3): 387-393.
[5] [Yang Xiaohong, Dong Yunshe, Qi Yuchun, et al. Mineral nitrogen dynamics in dark chestnut soil of Leymus chinensis grassland in the Xilin River Basin, China[J]. Geographical Research, 2005, 24(3): 387-393. ]
[6] 韩大勇, 杨永兴, 杨杨, 等. 放牧干扰下若尔盖高原沼泽湿地植被种类组成及演替模式[J]. 生态学报, 2011, 31(20): 5946-5955.
[6] [Han Dayong, Yang Yongxing, Yang Yang, et al. Species composition and succession of swamp vegetation along grazing gradients in the Zoige Plateau, China[J]. Acta Ecologica Sinica, 2011, 31(20): 5946-5955. ]
[7] 祁正超, 常佩静, 李永善, 等. 放牧对荒漠灌丛草地土壤团聚体组成及其稳定性的影响[J]. 干旱区研究, 2021, 38(1): 87-94.
[7] [Qi Zhengchao, Chang Peijing, Li Yongshan, et al. Effects of grazing intensity on soil aggregates composition, stability, and C/N in desert shrubland[J]. Arid Zone Research, 2021, 38(1): 87-94. ]
[8] 范桥发, 肖德荣, 田昆, 等. 不同放牧对滇西北高原典型湿地土壤碳、氮空间分布的差异影响[J]. 土壤通报, 2014, 45(5): 1151-1156.
[8] [Fan Qiaofa, Xiao Derong, Tian Kun, et al. Effect of grazing on carbon and nitrogen reserve of typical plateau wetland in Northwestern Yunnan[J]. Soil Bulletin, 2014, 45(5): 1151-1156. ]
[9] Mou X J, Sun Z G, Wang L L, et al. Nitrogen cycle of a typical Suaeda salsa marsh ecosystem in the Yellow River estuary[J]. Journal of Environmental Sciences, 2011, 23(6): 958-967.
[10] Hu R, Wang X P, Pan Y X, et al. The response mechanisms of soil N mineralization under biological soil crusts to temperature and moisture in temperate desert regions[J]. European Journal of Soil Biology, 2014, 62(66-73): 66-73.
[11] 田冬, 高明, 徐畅. 土壤水分和氮添加对3种质地紫色土氮矿化及土壤pH的影响[J]. 水土保持学报, 2016, 30(1): 255-261.
[11] [Tian Dong, Gao Ming, Xu Chang. Effects of soil moisture and nitrogen addition on nitrogen mineralization and soil pH in purple soil of three different textures[J]. Journal of Soil and Water Conservation, 2016, 30(1): 255-261. ]
[12] Stanford G, Smith S J. Nitrogen mineralization potentials of soils[J]. Soil Science Society of America Journal, 1972, 36: 465-472.
[13] 马维伟, 王跃思, 李广, 等. 尕海湿地植被退化过程中植被——土壤系统有机碳储量变化特征[J]. 应用生态学报, 2018, 29(12): 3900-3906.
[13] [Ma Weiwei, Wang Yuesi, Li Guang, et al. Variations of organic carbon storage in vegetation-soil systems during vegetation degradation in the Gahai Wetland, China[J]. Chinese Journal of Applied Ecology, 2018, 29(12): 3900-3906. ]
[14] 马维伟, 王辉, 李广, 等. 甘南尕海湿地退化过程中植被生物量变化及其季节动态[J]. 生态学报, 2017, 37(15): 5091-5101.
[14] [Ma Weiwei, Wang Hui, Li Guang, et al. Changes in plant biomass and its seasonal dynamics during degradation succession in the Gahai Wetland[J]. Acta Ecologica Sinica, 2017, 37(15): 5091-5101. ]
[15] 隽英华, 田路路, 刘艳, 等. 农田黑土氮素转化特征对冻融作用的响应[J]. 中国土壤与肥料, 2019, 56(6): 38-43.
[15] [Juan Yinghua, Tian Lulu, Liu Yan, et al. Response of nitrogen transformation characteristics to freezing thawing cycles in the farmland black soil[J]. Soil and Fertilizer Sciences in China, 2019, 56(6): 38-43. ]
[16] 李平, 郎漫, 魏玮. 不同施氮量对林地和农田黑土净氮转化速率的影响[J]. 土壤通报, 2020, 51(3): 694-701.
[16] [Li Ping, Lang Man, Wei Wei. Effects of nitrogen application amounts on net nitrogen transformation rates in forest and agricultural black soils[J]. Chinese Journal of Soil Science, 2020, 51(3): 694-701. ]
[17] 胡仲豪, 常顺利, 张毓涛, 等. 天山林区不同类型群落土壤氮素对冻融过程的动态响应[J]. 生态学报, 2019, 39(2): 571-579.
[17] [Hu Zhonghao, Chang Shunli, Zhang Yutao, et al. Dynamic response of soil nitrogen to freeze-thaw processes in different cenotypes in the forests of the Tianshan Mountains[J]. Acta Ecologica Sinica, 2019, 39(2): 571-579. ]
[18] 孔涛, 张莹, 雷泽勇, 等. 沙地樟子松人工林土壤氮矿化特征[J]. 干旱区研究, 2019, 36(2): 296-306.
[18] [Kong Tao, Zhang Ying, Lei Zeyong, et al. Soil nitrogen mineralization under Pinus sylvestris var. mongolica plantation on sandy soil[J]. Arid Zone Research, 2019, 36(2): 296-306. ]
[19] 李阳, 徐小惠, 孙伟, 等. 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响[J]. 植物生态学报, 2019, 43(2): 174-184.
[19] [Li Yang, Xu Xiaohui, Sun Wei, et al. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2019, 43(2): 174-184. ]
[20] 朱志成, 黄银, 许丰伟, 等. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952.
[20] [Zhu Zhicheng, Huang Yin, Xu Fengwei, et al. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Inner Mongolia grassland[J]. Chinese Journal of Plant Ecology, 2017, 41(9): 938-952. ]
[21] 赵琦齐, 沈玉娟, 李平, 等. 温度对太湖湖滨带不同水分梯度土壤氮矿化的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(6): 147-150.
[21] [Zhao Qiqi, Shen Yujuan, Li Ping, et al. Responses of soil nitrogen mineralization to temperature along soil moisture gradients in the riparian zone of Taihu Lake[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2011, 35(6): 147-150. ]
[22] Weiwei M, Alhassan A M, Yuesi W, et al. Greenhouse gas emissions as influenced by wetland vegetation degradation along a moisture gradient on the eastern Qinghai-Tibet Plateau of North-West China[J]. Nutrient Cycling in Agroecosystems, 2018, 112: 335-354.
[23] 徐国荣, 马维伟, 宋良翠, 等. 植被不同退化状态下尕海湿地土壤氮含量及酶活性特征[J]. 生态学报, 2020, 40(24): 8917-8927.
[23] [Xu Guorong, Ma Weiwei, Song Liangcui, et al. Characteristics of soil nitrogen content and enzyme activity in Gahai Wetland under different vegetation degradation conditions[J]. Acta Ecologica Sinica, 2020, 40(24): 8917-8927. ]
[24] 王士超, 陈竹君, 周建斌, 等. 水分对不同栽培年限日光温室土壤氮矿化的影响[J]. 干旱地区农业研究, 2019, 37(4): 124-131.
[24] [Wang Shichao, Chen Zhujun, Zhou Jianbin, et al. Effects of moisture on nitrogen mineralization in soils under solar greenhouses in different cultivation years[J]. Agricultural Research in the Arid Areas, 2019, 37(4): 124-131. ]
[25] 雷文琪, 张自翔, 张红梅, 等. 氯化钾和氯化钠浸提对比检测土壤中铵态氮的研究[J]. 南方农机, 2019, 50(1): 43-65.
[25] [Lei Wenqi, Zhang Zixiang, Zhang Hongmei, et al. Comparative research on determination of ammonium nitrogen in soil which extracted by potassium chloride and sodium chloride[J]. China Southern Agricultural Machinery, 2019, 50(1): 43-65. ]
[26] 李银坤, 陈敏鹏, 梅旭荣, 等. 土壤水分和氮添加对华北平原高产农田有机碳矿化的影响[J]. 生态学报, 2014, 34(14): 4037-4046.
[26] [Li Yinkun, Chen Minpeng, Mei Xurong, et al. Effects of soil moisture and nitrogen addition on organic carbon mineralization in a high-yield cropland soil of the North China Plain[J]. Acta Ecologica Sinica, 2014, 34(14): 4037-4046. ]
[27] Agehara S, Warncke D D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources[J]. Soil Science Society of America Journal, 2005, 69(6): 1844-1855.
[28] 桂慧颖, 李雪江, 王景燕, 等. 温度和水分对华西雨屏区毛竹林土壤氮矿化的影响[J]. 四川农业大学学报, 2018, 36(6): 758-764.
[28] [Gui Huiying, Li Xuejiang, Wang Jingyan, et al. Effects of temperature and moisture on soil nitrogen mineralization of phyllostachys heterocycla plantation in the rainy area of western China[J]. Journal of Sichuan Agricultural University, 2018, 36(6): 758-764. ]
[29] Bernal S, Sabater F, Butturini A, et al. Factors limiting denitrification in a Mediterranean riparian forest[J]. Soil Biology and Biochemistry, 2007, 39(10): 2685-2688.
[30] Roux X, Bardy M, Loiseau P, et al. Stimulation of soil nitrification and denitrification by grazing in grasslands: Do changes in plant species composition matter?[J]. Oecologia, 2003, 137(3): 417-425.
[31] 王芳芳, 徐欢, 李婷, 等. 放牧对草地土壤氮素循环关键过程的影响与机制研究进展[J]. 应用生态学报, 2019, 30(10): 3277-3284.
[31] [Wang Fangfang, Xu Huan, Li Ting, et al. Effects and mechanisms of grazing on key processes of soil nitrogen cycling in grassland: A review[J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3277-3284. ]
[32] Liu T Z, Nan Z B, Hou F J. Grazing intensity effects on soil nitrogen mineralization in semi-arid grassland on the Loess Plateau of northern China[J]. Nutrient Cycling in Agroecosystems, 2011, 91(1): 67-75.
[33] Chen D D, Sun D S, Zhang S H, et al. Soil N mineralization of an alpine meadow in eastern Qinghai-Tibetan Plateau[J]. Acta Agrestia Sinica, 2011, 19(3): 420-424.
[34] Xu Y Q, Li L H, Wang Q B, et al. The pattern between nitrogen mineralization and grazing intensities in an Inner Mongolian typical steppe[J]. Plant and Soil, 2007, 300(1-2): 289-300.
[35] 马维伟, 孔同伟, 宋元君, 等. 尕海湿地植被退化过程中土壤有机碳矿化特征[J]. 水土保持学报, 2020, 34(3): 342-348.
[35] [Ma Weiwei, Kong Tongwei, Song Yuanjun, et al. Characteristics of soil organic carbon mineralization during vegetation degradation in the Gahai Wetland, China[J]. Journal of Soil and Water Conservation, 2020, 34(3): 342-348. ]
[36] 马丽娜, 王喜明, 代万安, 等. 西藏高原日光温室菜地土壤碳、氮矿化特征研究[J]. 中国生态农业学报, 2013, 21(11): 1340-1349.
[36] [Ma Lina, Wang Ximing, Dai Wan’an, et al. Comparative analysis of carbon and nitrogen mineralization in soils under alpine meadow, farmland and greenhouse conditions in Tibet[J]. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1340-1349. ]
[37] Khalil M I, Hossain M B, Schimidhalter U. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials[J]. Soil Biology and Biochemistry, 2005, 37(8): 1507-1518.
[38] 王雪, 郭雪莲, 郑荣波, 等. 放牧对滇西北高原纳帕海沼泽化草甸湿地土壤氮转化的影响[J]. 生态学报, 2018, 38(7): 2308-2314.
[38] [Wang Xue, Guo Xuelian, Zheng Rongbo, et al. Effects of grazing on nitrogen transformation in swamp meadow wetland soils in Napahai of Northwest Yunnan[J]. Acta Ecologica Sinica, 2018, 38(7): 2308-2314. ]
Outlines

/