Weather and Climate

Downscaling land surface temperature through AMSR-2 passive microwave observations by Catboost semiempirical algorithms

Expand
  • 1. College of Grassland and Environment Sciences of Xinjiang Agricultural University, Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi 830052, Xinjiang, China
    2. Key Laboratory of Digital Earth Science,Aerospace Information Research Institute, Chinese Academy of Sciences,Beijing 100094, China
    3. Department of Geography of Handan University, Handan 056005, Hebei, China

Received date: 2020-12-10

  Revised date: 2021-05-05

  Online published: 2021-11-29

Abstract

This study aimed to fill in the missing pixels of MYD11A1 in the Gurbantunggut Desert and provide a theoretical basis for obtaining all-weather and multilayer soil temperatures during daytime and nighttime. We explored the feasibility of the CatBoost algorithm for the spatial downscaling of passive microwave surface temperature by using the four-channel passive microwave brightness temperature and MODIS vegetation index of the 2019 AMSR-2. Results show that (1) the spatial differentiation between feature vectors and surface temperature is evident during daytime and nighttime in the Gurbantunggut Desert. It indicates high desert correlation, low oasis correlation, and strong daytime differentiation. The salt mine coverage reduces the correlation between passive microwave brightness temperature and surface temperature. (2) The mapping relation between the passive microwave brightness temperature and surface temperature from the four-channel CatBoost model is robust. The accuracy of the downscaled results is high, with daytime-nighttime R2 of 0.977 and 0.980, RMSE of 3.69 and 2.38 K, and MAE of 2.71 K and 1.70 K, respectively. (3) Single-channel correlation and importance analysis results are different, suggesting that feature correlation results cannot be directly used as a basis for selecting surface temperature features with the CatBoost passive microwave inversion of LST. (4) Downscaling LST is significantly and positively correlated with the soil temperature in six layers from the Fukang site. The correlation coefficient decreases, and RMSE increases as depth increases.

Cite this article

LI Yongkang,WANG Xinjun,MA Yanfei,HU Guifeng,GUI Haiyue,ZHANG Guanhong . Downscaling land surface temperature through AMSR-2 passive microwave observations by Catboost semiempirical algorithms[J]. Arid Zone Research, 2021 , 38(6) : 1637 -1649 . DOI: 10.13866/j.azr.2021.06.15

References

[1] Li Z L, Tang B H, Wu H, et al. Satellite-derived land surface temperature: Current status and perspectives[J]. Remote Sensing of Environment, 2013, 131:14-37.
[2] Anderson M, Norman J, Kustas W, et al. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales[J]. Remote Sensing of Environment, 2008, 112(12):4227-4241.
[3] Kalma J D, McVicar T R, McCabe M F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data[J]. Surveys in Geophysics, 2008, 29(4):421-469.
[4] Wang K, Li Z, Cribb M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter[J]. Remote Sensing of Environment, 2006, 102(3):293-305.
[5] Faqe I G. Urban Land Use land cover changes and their effect on land surface temperature: Case study using dohuk city in the Kurdistan Region of Iraq[J]. Climate, 2017, 5(1):13-31.
[6] Wan Z, Wang P, Li X. Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA[J]. International Journal of Remote Sensing, 2010, 25(1):61-72.
[7] Hain C R, Anderson M C. Estimating morning change in land surface temperature from MODIS day/night observations: applications for surface energy balance modeling[J]. Geophysical Research Letters, 2017, 44(19):9723-9733.
[8] Neteler M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data[J]. Remote Sensing, 2010, 2(1):333-351.
[9] Wang F, Qin Z, Song C, et al. An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data[J]. Remote Sensing, 2015, 7(4):4268-4289.
[10] Duan S B, Li Z L, Wang C, et al. Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product[J]. International Journal of Remote Sensing, 2018, 40(5-6):1763-1778.
[11] Mao K, Shi J, Tang H, et al. A neural network technique for separating land surface emissivity and temperature from ASTER Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):200-208.
[12] 何文英, 陈洪滨, 李军. 陆面微波比辐射率的卫星观测研究进展[J]. 地球物理学报, 2020, 63(10):3573-3584.
[12] [ He Wenying, Chen Hongbin, Li Jun. Development of land surface microwave emissivity retrieval using satellite observations[J]. Chinese Journal of Geophysics, 2020, 63(10):3573-3584. ]
[13] 钱博, 陆其峰, 杨素英, 等. 卫星遥感微波地表发射率研究综述[J]. 地球物理学进展, 2016, 31(3):960-964.
[13] [ Qian Bo, Lu Qifeng, Yang Suying, et al. Review on microwave land surface emissivity by satellite remote sensing[J]. Progress in Geophysics, 2016, 31(3):960-964. ]
[14] 汪子豪, 秦其明, 孙元亨, 等. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5):793-802.
[14] [ Wang Zihao, Qin Qiming, Sun Yuanheng, et al. Downscaling of remotely sensed land surface temperature with the bp neural network[J]. Remote Sensing Technology and Application, 2018, 33(5):793-802. ]
[15] McFarland M J, Miller R L, Neale C M U. Land surface temperature derived from the SSM/I passive microwave brightness temperatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(5):839-845.
[16] Fily M. A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas[J]. Remote Sensing of Environment, 2003, 85(3):328-338.
[17] Gao H, Fu R, Dickinson R E, et al. A practical method for retrieving land surface temperature from AMSR-E over the Amazon Forest[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):193-199.
[18] Njoku E G, Li L. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1):79-93.
[19] Mao K, Shi J, Li Z, et al. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data[J]. Science in China Series D: Earth Sciences, 2007, 50(7):1115-1120.
[20] 毛克彪, 王道龙, 李滋睿, 等. 利用AMSR-E被动微波数据反演地表温度的神经网络算法[J]. 高技术通讯, 2009, 19(11):1195-1200.
[20] [ Mao Kebiao, Wang Daolong, Li Zirui, et al. A neural network method for retrieving land-surface temperature from AMSR-E data[J]. Chinese High Technology Letters, 2009, 19(11):1195-1200. ]
[21] Sun D, Li Y, Zhan X, et al. Land surface temperature derivation under all sky conditions through integrating AMSR-E/AMSR-2 and MODIS/GOES observations[J]. Remote Sensing, 2019, 11(14):1704.
[22] Tan J, Esmaeel N, Mao K, et al. Deep learning convolutional neural network for the retrieval of land surface temperature from AMSR2 data in China[J]. Sensors, 2019, 19(1):2987-3007.
[23] Huang G, Wu L, Ma X, et al. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions[J]. Journal of Hydrology, 2019, 574:1029-1041.
[24] Zhang Y, Zhao Z, Zheng J. CatBoost: A new approach for estimating daily reference crop evapotranspiration in arid and semi-arid regions of Northern China[J]. Journal of Hydrology, 2020, 588(125):87-99.
[25] 姜琦刚, 杨秀艳, 杨长保, 等. 基于CatBoost算法的面向对象土地利用分类[J]. 吉林大学学报(信息科学版), 2020, 38(2):185-191.
[25] [ Jiang Qigang, Yang Xiuyan, Yang Changbao, et al. Object-oriented land use classification based on CatBoost algorithm[J]. Journal of Jilin University(Information Science Edition), 2020, 38(2):185-191. ]
[26] 王新军, 赵成义, 杨瑞红, 等. 古尔班通古特沙漠南缘荒漠化过程演变的景观格局特征分析[J]. 干旱区地理, 2015, 38(6):1213-1225.
[26] [ Wang Xinjun, Zhao Chengyi, Yang Ruihong, et al. Landscape pattern characteristics of desertification evolution in southern Gurbantunggut Desert[J]. Arid Land Geography, 2015, 38(6):1213-1225. ]
[27] Mamtimin A, Wang Y, Sayit H, et al. Seasonal variations of the near-surface atmospheric boundary layer structure in China’s Gurbantünggüt Desert[J]. Advances in Meteorology, 2020: 6137237.
[28] 段呈, 吴玲, 王绍明, 等. 近30年古尔班通古特沙漠短命植物的时空格局[J]. 生态学报, 2017, 37(8):2642-2652.
[28] [ Duan Cheng, Wu Ling, Wang Shaoming, et al. Analysis of spatio-temporal patterns of ephemeral plants in the Gurbantünggüt Desert over the last 30 years[J]. Acta Ecologica Sinica, 2017, 37(8):2642-2652. ]
[29] 陈林, 王式功, 王莉莉. 新疆阜康地区秋季大气NOx和O3变化特征及影响要素[J]. 干旱气象, 2012, 30(3):345-352.
[29] [ Chen Lin, Wang Shigong, Wang Lili. Variation characteristics and influencing factors of NOx and Ozone in autumn in Fukang Region of Xinjiang[J]. Journal of Arid Meteorology, 2012, 30(3):345-352. ]
[30] 范永东. 模型选择中的交叉验证方法综述[D]. 太原: 山西大学, 2013.
[30] [ Fan Yongdong. A Summary of Cross-Validation in Model Selection[D]. Taiyuan: Shanxi University, 2013. ]
[31] 郝静, 孙成, 郭兴宇, 等. 京津冀内陆平原区PM2.5浓度时空变化定量模拟[J]. 环境科学, 2018, 39(4):1455-1465.
[31] [ Hao Jing, Sun Cheng, Guo Xingyu, et al. Simulation of the spatio-temporally resolved PM2.5 aerosol mass concentration over the inland plain of the Beijing-Tianjin-Hebei region[J]. Environmental Science, 2018, 39(4):1455-1465. ]
[32] 金旭峰, 吴莹, 钱博. 基于AMSR2数据的青藏高原地表温度反演[J]. 地球物理学进展, 2020, 35(4):1269-1275.
[32] [ Jin Xufeng, Wu Ying, Qian Bo. Retrieval of land surface temperature from AMSR2 data over the Qinghai-Tibetan Plateau[J]. Progress in Geophysics, 2020, 35(4):1269-1275. ]
[33] Bhagat V S. Space-borne passive microwave remote sensing of soil moisture: A review[J]. Recent Progress in Space Technology, 2015, 4(2):119-150.
[34] Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: Unbiased boosting with categorical features[J]. Advances in Neural Signal Processing, 2018: 6638-6648.
[35] Zhang K, Schölkopf B, Muandet K, et al. Domain adaptation under target and conditional shift[C]// 30th International Conference on Machine Learning, ICML, 2013: 1856-1864.
[36] Colliander A, Jackson T J, Bindlish R, et al. Validation of SMAP surface soil moisture products with core validation sites[J]. Remote Sensing of Environment, 2017, 191:215-231.
[37] 陶本藻, 邱卫宁, 张书毕, 等. 误差理论与测量平差[M]. 武汉: 武汉大学出版社, 2012.
[37] [ Tao Benzao, Qiu Weining, Zhang Shubi, et al. Error Theory and Measurement Adjustment[M]. Wuhan: Wuhan University Press, 2012. ]
[38] 毛克彪, 胡德勇, 黄健熙, 等. 针对被动微波AMSR-E数据的土壤水分反演算法[J]. 高技术通讯, 2010, 20(6):651-659.
[38] [ Mao Kebiao, Hu Deyong, Huang Jianxi, et al. A algorithm for retrieving soil moisture from AMSR-E passive microwave data[J]. Chinese High Technology Letters, 2010, 20(6):651-659. ]
[39] Wang W, Liang S, Meyers T. Validating MODIS land surface temperature products using long-term nighttime ground measurements[J]. Remote Sensing of Environment, 2008, 112(3):623-635.
[40] 于文凭, 马明国. MODIS地表温度产品的验证研究——以黑河流域为例[J]. 遥感技术与应用, 2011, 26(6):705-712.
[40] [ Yu Wenping, Ma Mingguo. Validation of the MODIS land surface temperature products: A case study of the Heihe River basin[J]. Remote Sensing Technology and Application, 2011, 26(6):705-712. ]
[41] Huang R, Huang J-x, Zhang C, et al. Soil temperature estimation at different depths, using remotely-sensed data[J]. Journal of Integrative Agriculture, 2020, 19(1):277-290.
Outlines

/