Weather and Climate

Spatiotemporal variation characteristics of the water budget in Xinjiang during the latest 53 years

Expand
  • 1. College of Geography Science and Tourism, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
    2. State Energy Group Xinjiang Jilintai Hydropower Development Co. Ltd, Ili 835700, Xinjiang, China

Received date: 2020-12-12

  Revised date: 2021-02-16

  Online published: 2021-11-29

Abstract

Based on the daily meteorological data of 58 meteorological stations in Xinjiang from 1965 to 2017, the daily potential evapotranspiration was calculated using a Penman-Monteith (P-M) model, after which the water budget was calculated by combining precipitation data. Mann-Kendall (M-K) mutation test, wavelet analysis and Pearson correlation analysis were used to analyze temporal and spatial variation characteristics and factors influencing water content in Xinjiang. We found: (1) In the last 53 years, the interannual variation in the water budget in Xinjiang showed an overall increasing trend. The maximum increasing tendency rate of water budget was 93.69 mm·(10a)-1 in the south of the Tianshan Mountains, followed by a minimum 34.36 mm·(10a)-1in the north of the Tianshan Mountains, where the average increasing tendency rate was 72.28 mm·(10a)-1 in the whole Xinjiang. Seasonal variation in the water budget was as follows: summer > spring > autumn > winter. The linear variation rate in summer was a maximum 18.82 mm·(10a)-1and minimum 2.64 mm·(10a)-1 in winter. (2) Spatially, the maximum moisture loss for each season mainly occured in the surrounding areas of the Turpan Basin, Hami region and the northern area of Bayingolin Mongolian Autonomous Prefecture. The minimum value is mainly located in the Yili River Valley and Aletai area. Annua water surplus and deficist are increasing in most areas and decreasing in the north of Tianshan Mountains and some areas of the Tarim Basin. (3) There was a sudden change in the time series data for mean water surplus and deficit in Xinjiang around 1985 year. Since 2000, except for the area north of the Tianshan Mountains, the water surplus and deficit in other areas showed a clear decreasing trend, with a time period of 28 years as the first main period.

Cite this article

LU Baobao,SUN Huilan,JIANG Quanquan,CAO Lijun,LAN Xiaoli,ZHANG Lele,LIU Tianyi . Spatiotemporal variation characteristics of the water budget in Xinjiang during the latest 53 years[J]. Arid Zone Research, 2021 , 38(6) : 1579 -1589 . DOI: 10.13866/j.azr.2021.06.10

References

[1] 李红瑛, 薛羽, 曹二佳, 等. 近50年来乌兰察布市水分盈亏量时空变化特征[J]. 干旱区资源与环境, 2019, 33(12):145-151.
[1] [ Li Hongying, Xue Yu, Cao Erjia, et al. Spatiotemporal variation characteristics of water deficit in Ulanqab during thelatest 50 years[J]. Journal of Arid Land Resources and Environment, 2019, 33(12):145-151. ]
[2] 刘惠英, 任洪玉, 张平仓, 等. 香溪河流域近60年来降雨量变化趋势及突变分析[J]. 水土保持研究, 2015, 22(4):282-286.
[2] [ Liu Huiying, Ren Hongyu, Zhang Pingcang, et al. Analysis of characteristics of variation and abrup change of precipitation in Xiangxi River Watershed over the past 60 years[J]. Research of Soil and Water Conservation, 2015, 22(4):282-286. ]
[3] 刘友存, 侯兰功, 焦克勤, 等. 全球气候指数与天山地区气温变化遥相关分析[J]. 山地学报, 2016, 34(6):679-689.
[3] [ Liu Youcun, Hou Langong, Jiao Keqin, et al. On the teleconnection patterns to air temperature in the Tianshan Mountain, China[J]. Mountain Research, 2016, 34(6):679-689. ]
[4] 陈颖, 贾孜拉·拜山. 新疆冬季气温年际异常的主模态及其成因分析[J]. 干旱区地理, 2019, 42(2):223-231.
[4] [ Chen Ying, Jiazila Baishan. Annual variation of winter temperature and its causes in Xinjiang[J]. Arid Land Geography, 2019, 42(2):223-231. ]
[5] 刘慧芝. 西北干旱区极端气候事件变化及其对北大西洋涛动指数的响应[D]. 乌鲁木齐: 新疆大学, 2016.
[5] [ Liu Huizhi. Changes in the Extreme Weather Events and the Responses to the North Atlantic Oscillation Index in the Arid Northwest China[D]. Urumqi: Xinjiang University, 2016. ]
[6] 黄建平, 季明霞, 刘玉芝, 等. 干旱半干旱区气候变化研究综述[J]. 气候变化研究进展, 2013, 9(1):9-14.
[6] [ Huang Jianping, Ji Mingxia, Liu Yuzhi, et al. An overview of arid and semi-arid climate change[J]. Climate Change Research, 2013, 9(1):9-14. ]
[7] Li B F, Chen Y N, Shi X, et al. Tempeature and precipitation changes in different environments in the region of Northwest China[J]. Theoretical and Applied Climatology, 2013, 112(3-4):598-595.
[8] 陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考[J]. 干旱区地理, 2012, 35(1):1-9.
[8] [ Chen Yaning, Yang Qing, Luo Yi, et al. Ponder on the issues of water resources in the arid region of Northwest China[J]. Arid Land Geography, 2012, 35(1):1-9. ]
[9] 徐荣潞, 李宝富, 廉丽姝. 1960—2015年西北干旱区相对湿度时空变化与气候要素的定量关系[J]. 水土保持研究, 2020, 27(6):233-239.
[9] [ Xu Ronglu, Li Baofu, Lian Lishu. Quantitative relationship between the spatiotemporal change of relative humidity and climatic factors in the arid region of Northwest China from 1960 to 2015[J]. Research of Soil and Water Conservation, 2020, 27(6):233-239. ]
[10] 赵俊芳, 郭建平, 徐精文, 等. 基于湿润指数的中国干湿状况变化趋势[J]. 农业工程学报, 2010, 26(8):18-24.
[10] [ Zhao Junfang, Guo Jianping, Xu Jingwen, et al. Trends of Chinese dry-wet condition based on wetness index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8):18-24. ]
[11] 曾丽红, 宋开山, 张柏. 1951—2008年东北地区水分盈亏量时空格局[J]. 自然资源学报, 2011, 26(5):858-870.
[11] [ Zeng Lihong, Song Kaishan, Zhang Bai. Spatia land temporal structure of water deficit over Northeast China during the period of 1951-2008[J]. Journal of Natural Resources, 2011, 26(5):858-870. ]
[12] 颜雅琼, 申双和. 近50多年来淮河流域气候水分盈亏时空变化[J]. 气象科学, 2019, 39(4):457-465.
[12] [ Yan Yaqiong, Shen Shuanghe. Spatial and temporal changes of climatic and water deficitin the Huaihe River Basin over past 50 years[J]. Journal of the Meteorological Sciences, 2019, 39(4):457-465. ]
[13] 史建国, 严昌荣, 何文清, 等. 黄河流域水分亏缺时空格局变化研究[J]. 自然资源学报, 2008, 23(1):113-119.
[13] [ Shi Jianguo, Yan Changrong, He Wenqing, et al. Study on spatial and temporal variation of water surplus and deficiency in Yellow River basin[J]. Journal of Natural Resources, 2008, 23(1):113-119. ]
[14] 徐冬平, 卜金洋, 杨军辉. 黄河流域水分盈亏量时空变化及其影响因素[J]. 干旱区研究, 2016, 33(4):739-746.
[14] [ Xu Dongping, Bu Jinyang, Yang Junhui. Spatiotemporal change of water budget and its affecting factors in the Yellow River basin[J]. Arid Zone Research, 2016, 33(4):739-746. ]
[15] 高歌, 许崇育. 1961—2010年中国十大流域水分盈亏量时空变化特征[J]. 地理学报, 2015, 70(3):380-391.
[15] [ Gao Ge, Xu Chongyu. Characteristics of water surplus and deficit change in 10 major river basins in China during 1961 to 2010[J]. Acta Geographica Sinica, 2015, 70(3):380-391. ]
[16] 姚玉龙, 刘普幸, 卓玛兰草. 51a来甘肃省水分盈亏量的时空变化特征[J]. 干旱区研究, 2014, 31(2):202-208.
[16] [ Yao Yulong, Liu Puxing, Zhuoma Lancao. Spatiotemporal change of water budget in Gansu province in recent 51 years[J]. Arid Zone Research, 2014, 31(2):202-208. ]
[17] 姚晓军, 张晓, 孙美平, 等. 1960—2010年中国西北地区水分盈亏量时空特征[J]. 地理研究, 2013, 32(4):607-616.
[17] [ Yao Xiaojun, Zhang Xiao, Sun Meiping, et al. Spatial-temporal characteristics of water deficit in Northwest China from 1960 to 2010[J]. Geographical Research, 2013, 32(4):607-616. ]
[18] 李佳秀, 陈亚宁, 刘志辉. 新疆不同气候区的气温和降水变化及其对地表水资源的影响[J]. 中国科学院大学学报, 2018, 35(3):371-380.
[18] [ Li Jiaxiu, Chen Yaning, Liu Zhihui. Variations in temperature and precipitation and their influences on surface water resource in different climate zones of Xinjiang[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(3):371-380. ]
[19] 刘伟, 姜逢清, 李小兰. 新疆气候变化的适应能力时空演化特征[J]. 干旱区研究, 2017, 34(3):531-540.
[19] [ Liu Wei, Jiang Fengqing, Li Xiaolan. Spatiotemporal evolution of adaptive capacity to climate change in Xinjiang[J]. Arid Zone Research, 2017, 34(3):531-540. ]
[20] 张扬, 楚新正, 杨少敏, 等. 近56 a新疆北部地区气候变化特征[J]. 干旱区研究, 2019, 36(1):212-219.
[20] [ Zhang Yang, Chu Xinzheng, Yang Shaomin. Climate change in North Xinjiang in recent 56 years[J]. Arid Zone Research, 2019, 36(1):212-219. ]
[21] 张音 古丽贤·吐尔逊拜, 苏里坦,, 等. 近60 a来新疆不同海拔气候变化的时空特征[J]. 干旱区地理, 2019, 42(4):822-829.
[21] [ Zhang Yin, Tuerxunbai Gulixian, Su Litan, et al. Spatial and temporal characteristics of climate change at different altitudes in Xinjiang in the past 60 years[J]. Arid Land Geography, 2019, 42(4):822-829. ]
[22] 普宗朝, 张山清, 王胜兰, 等. 近48 a新疆干湿气候时空变化特征[J]. 中国沙漠, 2011, 31(6):1563-1572.
[22] [ Pu Zongchao, Zhang Shanqing, Wang Shenglan, et al. The spitial-temporal variation characteristic of dry-wet climate in recent 48 years in Xinjiang Province, China[J]. Journal of Desert Research, 2011, 31(6):1563-1572. ]
[23] 宋佳, 徐长春, 杨媛媛, 等. 基于MODIS16的新疆干湿气候时空变化及影响因素[J]. 水土保持研究, 2019, 26(5):210-221.
[23] [ Song Jia, Xu Changchun, Yang Yuanyuan, et al. Temporal and spitial variation characteristic of evapotransiration and dry-wet climate in Xinjiang based on MODIS16[J]. Research of Soil and Water Conservation, 2019, 26(5):210-221. ]
[24] Jiapaer G L, Liang S L, Yi Q X, et al. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator[J]. Ecological Indicators, 2015, 58(5):64-76.
[25] 邓兴耀, 刘洋, 刘志辉, 等. 中国西北干旱区蒸散发时空动态特征[J]. 生态学报, 2017, 37(9):2994-3008.
[25] [ Deng Xingyao, Liu Yang, Liu Zhihui, et al. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of Northwest China[J]. Acta Ecologica Sinica, 2017, 37(9):2994-3008. ]
[26] 姚俊强, 杨青, 刘志辉, 等. 中国西北干旱区降水时空分布特征[J]. 生态学报, 2015, 35(17):5846-5855.
[26] [ Yao Junqiang, Yang Qing, Liu Zhihui, et al. Spatiotemporal change of precipitation in arid region of the Northwest China[J]. Acta Ecologica Sinica, 2015, 35(17):5846-5855. ]
[27] 杨莲梅, 刘晶. 新疆水汽研究若干进展[J]. 自然灾害学报, 2018, 27(2):1-13.
[27] [ Yang Lianmei, Liu Jing. Some advances of water vapor research in Xinjiang[J]. Journal of Natural Disasters, 2018, 27(2):1-13. ]
[28] 刘燕, 刘友存, 陈明, 等. 基于Penman-Monteith的江南丘陵地区地表参考蒸散量和水分盈亏量特征分析[J]. 安徽农业大学学报, 2019, 46(4):680-688.
[28] [ Liu Yan, Liu Youcun, Chen Ming, et al. Analysis on the variation characteristics of surface water in the Jiangnan Hills based on the Penman-Monteith method[J]. Journal of Anhui Agricultural University, 2019, 46(4):680-688. ]
[29] 陈镜明, 柳竞先, 罗翔中. 基于碳水通量耦合原理改进Penman-Monteith蒸散发模型[J]. 大气科学学报, 2020, 43(1):59-75.
[29] [ Chen Jingming, Liu Jingxian, Luo Xiangzhong. Improving the Penman-Monteith evapotranspiration model based on the coupling principle of carbon and water fluxes[J]. Transactions of Atmospheric Sciences, 2020, 43(1):59-75. ]
[30] Garcia M, Raes D, Allen R, et al. Dynamics of reference evapotranspiration in the Bolivian highlands (Altiplano)[J]. Agricultural and Forest Meteorology, 2004, 125(1-2):67-82.
[31] Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1):61-78.
[32] Yue S, Pilon P, Cavadias G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series[J]. Journal of Hydrology, 2002, 259(1):254-271.
[33] 张宏芳, 巨晓璇, 卢珊, 等. 精细化网格的降水预报解析方法对比[J]. 气象科技进展, 2019, 9(3):7-14.
[33] [ Zhang Hongfang, Ju Xiaoxuan, Lu Shan, et al. Comparison of parsing methods for fine grid precipitation forecasting[J]. Advances in Meteorological Science and Technology, 2019, 9(3):7-14. ]
[34] 郭小娇, 石建省. 水分蒸散发研究国内外进展与趋势[J]. 地质论评, 2019, 65(6):1473-1486.
[34] [ Guo Xiaojiao, Shi Jiansheng. Global review of the research progress and trend of evapotranspiration[J]. Geological Review, 2019, 65(6):1473-1486. ]
[35] 刘宪锋, 潘耀忠, 张锦水, 等. 1960—2011年西北五省潜在蒸散的时空变化[J]. 应用生态学报, 2013, 24(9):2564-2570.
[35] [ Liu Xianfeng, Pan Yaozhong, Zhang Jinshui, et al. Spatiotemporal variation patterns of potential evapotranspiration in five provinces of Northwes China in 1966-2011[J]. Chinese Journal of Applied Ecology, 2013, 24(9):2564-2570. ]
[36] Li Y, Chen Y, Li Z, Fang G. Recent recovery of surface wind speed in Northwest China[J]. International Journal of Climatology, 2018, 38(12):4445-4458.
[37] 姚俊强, 毛炜峄, 陈静, 等. 新疆气候“湿干转折”的信号和影响探讨[J]. 地理学报, 2021, 76(1):57-72.
[37] [ Yao Junqiang, Mao Weiyi, Chen Jing, et al. Signal and impact of wet-to-dry shift over Xinjiang, China[J]. Acta Geographica Sinica, 2021, 76(1):57-72. ]
Outlines

/