Water Resources and Utilization

Evaluation and combination analysis of runoff in Hotan River, Xinjiang

Expand
  • 1. College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
    2. Hydrology Bureau of Xinjiang Uygur Autonomous Region, Urumqi 830000, Xinjiang, China
    3. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

Received date: 2020-12-21

  Revised date: 2021-08-03

  Online published: 2021-11-29

Abstract

Studies on the different contributions of the runoff of the Hotan River in different time periods and synchronous-asynchronous encounter probability can provide a reference for the balance of industrial water, potable water, and water ecological environment and the improvement of water resource utilization efficiency in the Hotan River Basin. Mean standard deviation and fuzzy set pair analysis methods are applied to evaluate the runoff wetness-dryness of the Yulong Kashi River and the Karakashi River. The possibility of inter-runoff water transfer and synchronous-asynchronous encounter probability is analyzed on the basis of fuzzy set pair method and copula function. The fuzzy set pair method reveals that the Yulong Kashi River had 10 and 26 wet and dry years, respectively. By comparison, the mean standard deviation method shows that the Yulong Kashi River had 15 and 20 wet and dry years, respectively. The Karakash River had 9 wet years. Furthermore, 18 and 26 times in dry years were observed. In the fuzzy set pair method, the contribution of annual runoff and the influence of time history distribution are considered. Thus, evaluation results are more objective, and the difference in the probability of abundance and dryness obtained by the statistical method and the copula function is the same as the data scale is related to the way of dividing the abundance and dryness. The results of the two methods demonstrate that the probability of asynchronous abundance and dryness is greater than that of synchronous abundance and dryness, and the two tributaries have good complementarity. They can more clearly describe the high and low runoff status and the characteristics of high and low runoff in the Hotan River. They can also provide a basis for making decisions on water resource dispatch in the Hotan River Basin.

Cite this article

HUANG Xing,CHEN Fulong,ZHAO Qi,HE Chaofei,LONG Aihua . Evaluation and combination analysis of runoff in Hotan River, Xinjiang[J]. Arid Zone Research, 2021 , 38(6) : 1570 -1578 . DOI: 10.13866/j.azr.2021.06.09

References

[1] 余其鹰, 张江辉, 白云岗, 等. 1957—2018年和田河源流径流演变特征[J]. 干旱区研究, 2021, 38(2):494-503.
[1] [ Yu Qiying, Zhang Jianghui, Bai Yungang, et al. Evolution characteristics of the headstream of the Hotan River headstream from 1957 to 2018[J]. Arid Zone Research, 2021, 38(2):494-503. ]
[2] 薛强. 气候变化影响下的新疆和田河流域水资源变化特征研究[D]. 西安: 长安大学, 2020.
[2] [ Xue Qiang. Variation Characteristics Assessment for Water Resources the Hotan River Basin in Xinjiang under Climate Change[D]. Xi’an: Chang’an University, 2020. ]
[3] 邓铭江, 周海鹰, 徐海量, 等. 塔里木河干流上中游丰枯情景下生态水调控研究[J]. 干旱区研究, 2017, 34(5):959-966.
[3] [ Deng Mingjiang, Zhou Haiying, Xu Hailiang, et al. Regulation of ecological water volume under high-or low-flow in the mainstream area of the Tarim River[J]. Arid Zone Research, 2017, 34(5):959-966. ]
[4] 王文圣. 水文水资源集对分析[M]. 北京: 科学出版社, 2010.
[4] [ Wang Wensheng. Set Pair Analysis of Water Resources and Hydrology[M]. Beijing: Science Press, 2010. ]
[5] 张春荣, 纪淑娟, 朱红梅. 基于层次分析和灰色分析的水质风险评价方法[J]. 水资源保护, 2011, 27(1):11-14.
[5] [ Zhang Chunrong, Ji Shujuan, Zhu Hongmei. Water quality risk assessment based on analytic hierarchy process and gray analysis method[J]. Water Resources Protection, 2011, 27(1):11-14. ]
[6] 赵太想, 王文圣, 周秀平. 一种径流丰枯分类的新方法研究[J]. 人民黄河, 2006, 57(5):12-13.
[6] [ Zhao Taixiang, Wang Wensheng, Zhou Xiuping. Study on a new method of wet and dry classification of one type runoff[J]. Yellow River, 2006, 57(5):12-13. ]
[7] 邓红霞, 汤成友, 李存军, 等. 基于模糊模式识别的径流特性分析[J]. 四川大学学报(工程科学版), 2006, 49(3):29-33.
[7] [ Deng Hongxia, Tang Chengyou, Li Cunjun, et al. Runoff characteristic analysis by fuzzy pattern recognition[J]. Journal of Sichuan University(Engineering Science Edition), 2006, 49(3):29-33. ]
[8] 李深奇, 肖景西, 覃光华, 等. 基于率定量化标准系数的SPA年径流预测[J]. 长江科学院院报, 2016, 33(1):6-9.
[8] [ Li Shenqi, Xiao Jingxi, Qin Guanghua, et al. Prediction of annual runoff based on SPA with calibration of quantitative standard coefficient[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(1):6-9. ]
[9] 梁淑琪, 王文圣, 金菊良. 农业干旱灾害风险模糊集对评价法及其应用[J]. 水文, 2019, 39(1):1-6.
[9] [ Liang Shuqi, Wang Wensheng, Jin Juliang. Assessment method based on fuzzy theory and set pair analysis and its application to agricultural drought disaster risk evaluation[J]. Journal of China Hydrology, 2019, 39(1):1-6. ]
[10] 周晓曦. 气候变化和人类活动对和田河上游径流量的影响研究[D]. 乌鲁木齐: 新疆大学, 2017.
[10] [ Zhou Xiaoxi. The Impact of Climate Change and Human Activities on the Hotan River Runoff[D]. Urumqi: Xinjiang University, 2017. ]
[11] 郭宏伟, 徐海量, 凌红波, 等. 和田河流域生态保护红线划定初探[J]. 干旱地区农业研究, 2017, 35(6):235-243.
[11] [ Guo Hongwei, Xu Hailiang, Ling Hongbo, et al. Preliminary study on delimitation of ecological protection red line in Hotan River Basin[J]. Agricultural Research in the Arid Areas, 2017, 35(6):235-243. ]
[12] 董弟文, 阿布都热合曼·哈力克, 王大伟, 等. 近60年和田河源流区径流特征及对气候变化的响应[J]. 中国水利水电科学研究院学报, 2018, 6(6):536-543.
[12] [ Dong Diwen, Abdirahman Halik, Wang Dawei, et al. Characteristics of runoff and response to climate change in the Hotan River source area in recent six decades[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 6(6):536-543. ]
[13] 关东海, 苏里坦·达尼尔汗. 和田河流域生态敏感性分析[J]. 中国水土保持科学, 2013, 11(增刊1):41-47.
[13] [ Guan Donghai, Sulitan Danierhan. Ecological sensitivity analysis of Hetian River Basin[J]. Science of Soil and Water Conservation, 2013, 11(Suppl. 1):41-47. ]
[14] 郑威, 于国荣, 张代青. 径流丰枯分类的投影寻踪-集对分析耦合方法[J]. 水文, 2020, 40(2):17-22.
[14] [ Zheng Wei, Yu Guorong, Zhang Daiqing. Annual runoff classification based on projection pursuit and set pair analysis coupling method[J]. Journal of China Hydrology, 2020, 40(2):17-22. ]
[15] 徐源蔚, 李祚泳, 汪嘉杨. 基于集对分析的相似模型在地下水位预测中的应用[J]. 水文, 2015, 35(6):6-10.
[15] [ Xu Yuanwei, Li Zuoyong, Wang Jiayang. Similar forecast models of underground water level based on set pair analysis[J]. Journal of China Hydrology, 2015, 35(6):6-10. ]
[16] 沈婕, 梁忠民, 王军. 基于模糊集对分析的河湖水系连通风险评估[J]. 水力发电, 2020, 46(11):1-5.
[16] [ Shen Jie, Liang Zhongmin, Wang Jun. Risk assessment of river and lake system connectivity based on fuzzy set pair analysis[J]. Water Power, 2020, 46(11):1-5. ]
[17] 王文圣, 金菊良, 丁晶, 等. 水资源系统评价新方法——集对评价法[J]. 中国科学(E辑: 技术科学), 2009, 39(9):1529-1534.
[17] [ Wang Wensheng, Jin Juliang, Ding Jing, et al. A new approach to water resources system assessment: Set pair analysis method[J]. Science in China(Series E), 2009, 39(9):1529-1534. ]
[18] 张志君, 陈伏龙, 龙爱华, 等. 基于模糊集对分析法的新疆水资源安全评价[J]. 水资源保护, 2020, 36(2):53-58, 78.
[18] [ Zhang Zhijun, Chen Fulong, Long Aihua, et al. Xinjiang water resources security evaluation based on fuzzy set pair analysis[J]. Water Resources Protection, 2020, 36(2):53-58, 78. ]
[19] 胡惠兰, 周亮广. 淮河流域水资源短缺风险评估与时空分析[J]. 南水北调与水利科技, 2017, 15(6):59-65.
[19] [ Hu Huilan, Zhou Liangguang. The risk assessment and space-time analysis of water resources shortage in Huaihe River Basin[J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(6):59-65. ]
[20] Zhang Qiang, Xiao Mingzhong, Singh Vijay P. Uncertainty evaluation of copula analysis of hydrological droughts in the East River basin, China[J]. Global and Planetary Change, 2015, 129:1-9.
[21] 刘雪琴, 李宁, 吉中会, 等. 基于Copulas函数的内蒙古强沙尘暴特征及其灾害性研究[J]. 干旱区研究, 2012, 29(4):705-712.
[21] [ Liu Xueqin, Li Ning, Ji Zhonghui, et al. Study on severe dust storms and their disasters in Inner Mongolia based on Copulas function[J]. Arid Zone Research, 2012, 29(4):705-712. ]
[22] 郑红星, 刘昌明. 南水北调东中两线不同水文区降水丰枯组合性分析[J]. 地理学报, 2000, 55(5):523-532.
[22] [ Zheng Hongxing, Liu Changming. Analysis on asynchronism-synchronism of regional precipitation in planned South-to-North water transfer areas[J]. Acta Geographica Sinica, 2000, 55(5):523-532. ]
[23] 黄领梅, 沈冰. 和田河汇入塔里木河径流演变及成因分析[J]. 水资源与水工程学报, 2012, 23(2):26-28, 32.
[23] [ Huang Lingmei, Shen Bing. Analysis on runoff evolution and cause of Hotan River flowing into the Tarim River[J]. Journal of Water Resources and Water Engineering, 2012, 23(2):26-28, 32. ]
[24] 李成秀. 昆仑山冰川和积雪变化的遥感监测[D]. 兰州: 兰州大学, 2014.
[24] [ Li Chengxiu. Remote Sensing Monitoring of Glacier and Snow Cover Changes in the Kunlun Mountain[D]. Lanzhou: Lanzhou University, 2014. ]
[25] 王新. 乌鲁瓦提水库建设对和田河的影响[J]. 水资源与水工程学报, 2014, 25(1):191-194.
[25] [ Wang Xin. Study on influence of Wuluwati reservoir construction on Hotan River[J]. Journal of Water Resources and Water Engineering, 2014, 25(1):191-194. ]
Outlines

/