Applied Climate

Spatiotemporal characteristics of extreme precipitation in Shaanxi Province based on the regional L-moments method

Expand
  • 1. Power China Jiangxi Electric Power Engineering Co., LTD., Nanchang 330096, Jiangxi, China
    2. Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
    3. Nanjing Hydraulic Research Institute, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing 210029, Jiangsu, China
    4. Research Center for Climate Change, Ministry of Water Resources, Nanjing 210029, Jiangsu, China
    5. Fuzhou Meteorology Bureau, Fuzhou 350008, Fujian, China
    6. Jiangxi Science and Technology Exchange Center, Nanchang 330096, Jiangxi, China

Received date: 2021-03-04

  Revised date: 2021-06-24

  Online published: 2021-09-24

Abstract

Extreme precipitation can cause severe disasters in arid and semi-arid regions, such as in the Shaanxi Province of Northern China. To investigate the spatiotemporal characteristics of extreme precipitation in the Shaanxi Province, this study adopted the daily precipitation data of 58 meteorological stations from 1971 to 2015 with no missing observations and relatively uniform distribution and used the maximum precipitation on the 1st, 3rd, 5th, and 7th day to represent the extreme precipitation. The regional L-moments method was further applied to study the temporal and spatial characteristics of the extreme regional precipitation, which involves the screening and processing of precipitation data, identification of homogeneous regions, goodness-of-fit test, quantile estimation for each region, comparison between at-site and regional estimation, deriving regional growth factors, and mapping of the spatial patterns of extreme precipitation. The results and conclusions of the study were: (1) Shaanxi Province can be divided into six hydrometeorological homogeneous regions, among which GEV distribution in each homogeneous region has the best simulation effect, and the estimated optimal quantiles of each homogeneous region are in good agreement with the measured value of the same frequency. (2) The estimated extreme precipitation quantiles calculated by the regional analysis method have better robustness and accuracy compared with the single-station analysis method, especially more significant in calculating extreme precipitation over a long period. (3) When the return period is once every 2 years, the regional growth factor of southern Shaanxi is greater than that of northern Shaanxi; when the return period is once every 5 years, the opposite is true, and with the increase of the return period, the regional growth factor and the difference between southern Shaanxi and northern Shaanxi also increase. (4) In the 100-and 50-year return periods, extreme precipitation is large in the south, centered in the east, the Xianyang-Shangluo region in the middle, the northwest corner of Yan’an in the west, and the west of Yulin are small. The distribution characteristics of extreme precipitation are related to the unique geographical characteristics of Shaanxi Province, especially the east-west Qinling Mountains, which block the water vapor transmission to the north, causing differences in extreme precipitation between the north and south.

Cite this article

LUO Zhiwen,WANG Xiaojun,LIU Mengyang,KE Hang,WAN Ting,YIN Yixing . Spatiotemporal characteristics of extreme precipitation in Shaanxi Province based on the regional L-moments method[J]. Arid Zone Research, 2021 , 38(5) : 1295 -1305 . DOI: 10.13866/j.azr.2021.05.11

References

[1] 任正果, 张明军, 王圣杰, 等. 1961—2011年中国南方地区极端降水事件变化[J]. 地理学报, 2014, 69(5): 640-649.
[1] [ Ren Zhengguo, Zhang Mingjun, Wang Shengjie, et al. Change in precipitation extremes in South China during 1961-2011[J]. Acta Geographica Sinica, 2014, 69(5): 640-649. ]
[2] 刘梦洋, 王小军, 柯杭, 等. 甘肃省陇东地区夏季极端降水及典型年环流特征分析[J]. 干旱区研究, 2021, 38(3): 775-784.
[2] [ Liu Mengyang, Wang Xiaojun, Ke Hang, et al. Analysis of extreme summer precipitation characteristics and typical years’circulation characteristics in Longdong Region[J]. Arid Zone Research, 2021, 38(3): 775-784. ]
[3] Re M, Barros V R. Extreme rainfalls in SE South America[J]. Climatic Change, 2009, 96(1-2): 119-136.
[4] Hu Y, Maskey S, Uhlenbrook S. Trends in temperature and rainfall extremes in the Yellow River source region, China[J]. Climatic Change, 2012, 110(1): 403-429.
[5] 翟盘茂, 王萃萃, 李威. 极端降水事件变化的观测研究[J]. 气候变化研究进展, 2007, 3(3): 144-148.
[5] [ Zhai Panmao, Wang Cuicui, Li Wei. A review on study of change in precipitation extremes[J]. Advances in Climate Change Research, 2007, 3(3): 144-148. ]
[6] 杨金虎, 江志红, 王鹏祥, 等. 中国年极端降水事件的时空分布特征[J]. 气候与环境研究, 2008, 13(1): 75-82.
[6] [ Yang Jinhu, Jiang Zhihong, Wang Pengxiang, et al. Temporal and spatial characteristic of extreme precipitation event in China[J]. Climatic and Environmental Research, 2008, 13(1): 75-82. ]
[7] 杨涵洧, 龚志强, 王晓娟, 等. 中国东部夏季极端降水年代际变化特征及成因分析[J]. 大气科学, 2020, 45(2): 1-14.
[7] [ Yang Hanwei, Gong Zhiqiang, Wang Xiaojuan, et al. Analysis of the characteristics and causes of interdecadal changes in the summer extreme precipitation over Eastern China[J]. Chinese Journal of Atmospheric Sciences, 2020, 45(2): 1-14. ]
[8] 龙妍妍, 范广洲, 李飞, 等. 高原夏季风对中国夏季极端降水的影响研究[J]. 高原气象, 2018, 37(1): 1-12.
[8] [ Long Yanyan, Fan Guangzhou, Li Fei, et al. Study on the influence of plateau summer extreme precipitation over China[J]. Plateau Meteorology, 2018, 37(1): 1-12. ]
[9] 郑小华, 娄盼星, 刘环, 等. 陕西极端降水时空变化特征研究[J]. 沙漠与绿洲气象, 2019, 13(4): 9-16.
[9] [ Zheng Xiaohua, Lou Panxin, Liu Huan, et al. Spatial and temporal variability of extreme precipitation in the Shaanxi Province during 1961-2011[J]. Desert and Oasis Meteorology, 2019, 13(4): 9-16. ]
[10] 王雯燕. 陕西50多年来汛期极端降水事件变化特征研究[D]. 成都: 成都信息工程大学, 2016.
[10] [ Wang Wenyan.Study on the Variation Characteristics of Extreme Precipitation Events in Shaanxi Over the Past 50 Years[D]. Chengdu: Chengdu University of Information Technology, 2016. ]
[11] 李双双, 汪成博, 延军平, 等. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007.
[11] [ Li Shuangshuang, Wang Chengbo, Yan Junping, et al. Variability of the event-based extreme precipitation in the South and North Qinling Mountains[J]. Acta Geographica Sinica, 2020, 75(5): 989-1007. ]
[12] 肖科丽, 王娜, 魏娜, 等. 2010年陕西盛夏极端多雨的气候特征及成因研究[J]. 气候与环境研究, 2014, 19(3): 311-320.
[12] [ Xiao Keli, Wang Na, Wei Na, et al. Climatic features and cause analysis of extreme rain events in Shaanxi during the midsummer of 2010[J]. Climatic and Environmental Research, 2014, 19(3): 311-320. ]
[13] Yin Y X, Chen H S, Xu C Y, et al. Spatio-temporal characteristics of the extreme precipitation by L-moment-based index-flood method in the Yangtze River Delta Region, China[J]. Theoretical & Applied Climatology, 2016, 124(3-4): 1005-1022.
[14] 李孟芮, 敖天其, 黎小东. 地区线性矩法在四川省暴雨频率分析中的应用[J]. 西南农业学报, 2019, 32(8): 1938-1943.
[14] [ Li Mengrui, Ao Tianqi, Li Xiaodong. Regional frequency analysis in hydrological frequency analysis of Sichuan Province[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(8): 1938-1943. ]
[15] 吴俊梅, 林炳章, 邵月红. 地区线性矩法在太湖流域暴雨频率分析中的应用[J]. 水文, 2015, 35(5): 15-22.
[15] [ Wu Junmei, Lin Bingzhang, Shao Yuehong. Application of regional L-moments analysis method in precipitation frequency analysis for Taihu Lake Basin[J]. Journal of China Hydrology, 2015, 35(5): 15-22. ]
[16] 刘梦洋, 尹义星, 韩翠, 等. 基于地区线性矩法的江西省极端降水频率分析[J]. 水电能源科学, 2018, 36(9): 1-5.
[16] [ Liu Mengyang, Yin Yixing, Han Cui, et al. Frequency analysis of extreme precipitation in Jiangxi Province based on regional L-moments method[J]. Water Resources and Power, 2018, 36(9): 1-5. ]
[17] 陈希, 林炳章, 吴俊梅, 等. 水文气象分区线性矩法在广西暴雨频率分析中的应用[J]. 水电能源科学, 2014, 32(11): 5-9.
[17] [ Chen Xi, Lin Bingzhang, Wu Junmei, et al. Application of hydrometeorological regional L-moments method to storm frequency analysis in Guangxi[J]. Water Resources and Power, 2014, 32(11): 5-9. ]
[18] 牛晨. 关中地区极端降水时空变化规律及频率分布研究[D]. 杨凌: 西北农林科技大学, 2018.
[18] [ Niu Chen. Study on Spatial and Temporal Variation of Extreme Precipitation and Frequency Distribution in Guanzhong Area[D]. Yangling: Northwest A & F University, 2018. ]
[19] 李敏, 林炳章, 邵月红, 等. 地区线性矩法估算的暴雨频率设计值空间连续性问题探[J]. 水文, 2015, 35(4): 14-19.
[19] [ Li Min, Lin Bingzhang, Shao Yuehong, et al. Study on spatial continuity of precipitation quantile estimates based on regional L-moments analysis[J]. Journal of China Hydrology, 2015, 35(4): 14-19. ]
[20] Kumar R, Chatterjee C. Regional flood frequency analysis using L-moments for North Brahmaputra Region of India[J]. Journal of Hydrologic Engineering, 2005, 10(1): 1-7.
[21] 李孟芮, 敖天其, 黎小东. 基于地区线性矩法对四川省水文频率分析的研究[J]. 水利水电技术, 2018, 49(11): 54-61.
[21] [ Li Mengrui, Ao Tianqi, Li Xiaodong. Regional L-moments analysis-based study on hydrological frequency analysis of Sichuan Province[J]. Water Resources and Hydropower Engineering, 2018, 49(11): 54-61. ]
[22] Hosking J R M, Wallis. Regional Frequency Analysis: An Approach Based on L-moments[M]. Cambridge: Cambridge University Press, 1997.
[23] Hosking J R M. L-moments: Analysis and estimation of distributions using linear combinations of order statistics[J]. Journal of the Royal Statal Society: Series B( Methodological), 1990, 52(1): 105-124.
[24] 邵月红, 吴俊梅, 李敏. 基于水文气象分区线性矩法的淮河流域极值降雨频率分析[J]. 水文, 2016, 36(6): 16-23.
[24] [ Shao Yuehong, Wu Junmei, Li Min. Frequency analysis of extreme precipitation in Huaihe River Basin based on hydrometeorological regional L-moments method[J]. Journal of China Hydrology, 2016, 36(6): 16-23. ]
[25] 邵月红, 刘玲, 吴俊梅, 等. 基于年最大抽样序列的暴雨频率估计值的修正研究[J]. 水文, 2019, 39(1): 9-16.
[25] [ Shao Yuehong, Liu Ling, Wu Junmei, et al. Revision of extreme precipitation frequency estimation based on annual maximum series[J]. Journal of China Hydrology, 2019, 39(1): 9-16. ]
[26] 殷田园, 殷淑燕, 李富民. 秦岭南北区域夏季极端降水与西太平洋副热带高压的关系[J]. 干旱区研究, 2019, 36(6): 1379-1390.
[26] [ Yin Tianyuan, Yin Shuyan, Li Fumin. Relationship between the summer extreme precipitation in the South and North of the Qinling Mountains and the Western Pacific Subtropical High[J]. Arid Zone Research, 2019, 36(6): 1379-1390. ]
Outlines

/