Others

Effects of Rhombomys opimus disturbance on soil physical and chemical properties of artificial Haloxylon ammodendron forest

Expand
  • 1. College of Forestry, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2. State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou 730070, Gansu, China

Received date: 2020-12-23

  Revised date: 2021-01-15

  Online published: 2021-08-03

Abstract

An investigation into the influence of Rhombomys opimus disturbance on the physical and chemical properties of soil could clarify the ecological function and role that R. opimus plays in artificial Haloxylon ammodendron forest. Specifically, the in-use (effective burrows) and abandoned (abandoned burrows) burrows of R. opimus in an artificial H. ammodendron forest were analyzed for the layered determination of 0-30 cm soil moisture, organic matter, total nitrogen, and other parameters to determine how R. opimus excavation activities influence the physical and chemical properties of soil. The results showed that the water content and bulk density of the 0-30 cm layer of soil had the same change laws: Abandoned cave < effective hole < control; and the water content and bulk density increased with increased burrow depth. The salt content in the soil layers in the effective and abandoned burrows decreased with increased soil depth. The pH of each soil layer increased in the effective burrows, but decreased in the abandoned burrows. The total nitrogen in each soil layer (0-10 cm, 10-20 cm, 20-30 cm) in the effective burrows was 0.23 g·kg -1, 0.13 g·kg-1, and 0.22 g·kg-1 higher than in the abandoned burrows. The total phosphorus and total potassium in the soil layers were: Effective burrows > abandoned burrows > control, with the highest content in the 0-10 cm layer. The available phosphorus in the soil layers of both burrows had the same change rule, with the highest content in the 20-30 cm layer. The effective potassium in each soil level in the effective burrows was 1.05, 1.01, and 1.01 times that of the abandoned burrows. Organic matter: The total amount of organic matter in the effective and abandoned burrows increased by 63.2% and 48.8%, respectively. In summary, the soil nutrients of the effective burrows were generally higher than those of the abandoned burrows, and the soil nutrients increased in different degrees, indicating that R. opimus disturbance could change the soil bulk density and water patterns, promote nutrient accumulation, and increase soil fertility.

Cite this article

MENG Ruiling,XU Xianying,WANG Li,LIU Hujun,ZHAO Peng,LI Fengbo . Effects of Rhombomys opimus disturbance on soil physical and chemical properties of artificial Haloxylon ammodendron forest[J]. Arid Zone Research, 2021 , 38(4) : 1192 -1198 . DOI: 10.13866/j.azr.2021.04.31

References

[1] 王飞, 马剑平, 马俊梅, 等. 民勤不同林龄胡杨根区土壤理化性质及相关性分析[J]. 西北林学院学报, 2020, 35(3):23-28, 54.
[1] [ Wang Fei, Ma Jianping, Ma Junmei, et al. Physicochemical properties and correlations of the soils in the Populus euphratica forests with different ages in Minqin[J]. Journal of Northwest Forestry University, 2020, 35(3):23-28, 54. ]
[2] 赛牙热木·哈力甫, 宋瑞清, 艾克拜尔·伊拉洪, 等. 察布查尔县土壤碳氮磷钾垂直分布规律研究[J]. 干旱区地理, 2018, 41(3):582-591.
[2] [ Saiyare Halpu, Song Ruiqing, Aikebaier Yilahong, et al. Vertical distribution of soil nitrogen, phosphor and potassium in Qapgal County[J]. Arid Land Geography, 2018, 41(3):582-591. ]
[3] 高露, 张圣微, 赵鸿彬, 等. 退化草原土壤理化性质空间异质性及其对土壤水分的影响[J]. 干旱区研究, 2020, 37(3):607-617.
[3] [ Gao Lu, Zhang Shengwei, Zhao Hongbin, et al. Spatial heterogeneity of soil physical and chemical properties in degraded grassland and their effect on soil moisture[J]. Arid Zone Research, 2020, 37(3):607-617. ]
[4] 刘江, 徐先英, 张荣娟, 等. 不同退化程度人工梭梭林对土壤理化性质与生物学特性的影响[J]. 草业学报, 2017, 26(12):1-12.
[4] [ Liu Jiang, Xu Xianying, Zhang Rongjuan, et al. Physicochemical and biological properties of soil in Haloxylon ammodendron plantations with different states of degradation[J]. Acta Prataculturae Sinica, 2017, 26(12):1-12. ]
[5] 王琦, 全占军, 韩煜, 等. 风沙区采煤塌陷不同恢复年限土壤理化性质变化[J]. 水土保持学报, 2014, 28(2):118-122, 126.
[5] [ Wang Qi, Quan Zhanjun, Han Yu, et al. Changes of soil physical and chemical properties under different coal mining subsidence years in windy desert area[J]. Journal of Soil and Water Conservation, 2014, 28(2):118-122, 126. ]
[6] 麦尔哈巴·尼加提, 戴岳, 师庆东, 等. 准噶尔盆地东南缘荒漠灌丛盐生假木贼周围土壤理化性质研究[J]. 灌溉排水学报, 2019, 38(7):38-44.
[6] [ Marhaba Nijat, Dai Yue, Shi Qingdong, et al. Physical and chemical properties of soil at southeastern edge of Anabasis salsa in Junggar Basin[J]. Journal of Irrigation and Drainage, 2019, 38(7):38-44. ]
[7] 常海涛, 赵娟, 刘佳楠, 等. 退耕还林与还草对土壤理化性质及分形特征的影响——以宁夏荒漠草原为例[J]. 草业学报, 2019, 28(7):14-25.
[7] [ Chang Haitao, Zhao Juan, Liu Jianan, et al. Changes in soil physico-chemical properties and related fractal features during conversion of cropland into agroforestry and grassland: A case study of desertified steppe in Ningxia[J]. Acta Prataculturae Sinica, 2019, 28(7):14-25. ]
[8] 罗华智, 刘伟, 杨楠, 等. 高原鼢鼠对若尔盖高原湿地草原土壤性质和植物生物量的扰动效应[J]. 西南农业学报, 2020, 33(3):626-630.
[8] [ Luo Huazhi, Liu Wei, Yang Nan, et al. Disturbing effects of plateau zokor (Myospalax baileyi) on soil properties and plant biomass in zoige plateau marshes[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(3):626-630. ]
[9] Gómez-García D, Giannoni S M, Reiné R, et al. Movement of seeds by the burrowing activity of mole-voles on disturbed soil mounds in the spanish pyrenees[J]. Arctic Antarctic & Alpine Research, 1999, 31(4):407-411.
[10] 张雷, 楚新正, 李艳红, 等. 荒漠鼠类对新疆甘家湖湿地边缘带土壤性质的扰动效应研究[J]. 生物灾害科学, 2014, 37(1):50-55.
[10] [ Zhang Lei, Chu Xinzheng, Li Yanhong, et al. Study on soil disturbance effects of desert rodents on the Xinjiang Ganjiahu Wetland[J]. Biological Disaster Science, 2014, 37(1):50-55. ]
[11] 徐文轩, 刘伟, 杨维康, 等. 大沙鼠在柽柳沙包“肥岛”形成过程中的作用[J]. 生态学杂志, 2012, 31(7):1756-1762.
[11] [ Xu Wenxuan, Liu Wei, Yang Weikang, et al. Role of Rhombomys opimus in the development of “fertile island” in tamarisk mounds in Junggar Basin[J]. Chinese Journal of Ecology, 2012, 31(7):1756-1762. ]
[12] 杨维康, 蒋慧萍, 王雪芹, 等. 古尔班通古特沙漠区大沙鼠对荒漠植物群落的扰动效应[J]. 生态学杂志, 2009, 28(10):2020-2025.
[12] [ Yang Weikang, Jiang Huiping, Wang Xueqin, et al. Disturbance effects of Rhombomys opinms on desert plant community in Gurbantonggut Desert[J]. Chinese Journal of Ecology, 2009, 28(10):2020-2025. ]
[13] Weltzin J F, Archer S, Heitschmidt R K. Small-mammal regulation of vegetation structure in a temperate savanna[J]. Ecology, 1997, 78(3):751-763.
[14] 杨维康, 乔建芳, 蒋慧萍, 等. 大沙鼠掘洞对准噶尔荒漠植物群落的小尺度影响[J]. 干旱区地理, 2006, 29(2):219-224.
[14] [ Yang Weikang, Qiao Jianfang, Jiang Huiping, et al. Impact of burrows of the great gerbil on small-scale plant community in Junggar Desert, China[J]. Arid Land Geography, 2006, 29(2):219-224. ]
[15] Xu W X, Liu W, Yang W K, et al. Rhombomys opimus contribution to the “fertile island” effect of tamarisk mounds in Junggar Basin[J]. Ecological Research, 2012, 27(4):775-781.
[16] 李从娟, 雷加强, 徐新文, 等. 树干径流对梭梭“肥岛”和“盐岛”效应的作用机制[J]. 生态学报, 2012, 32(15):4819-4826.
[16] [ Li Congjuan, Lei Jiaqiang, Xu Xinwen, et al. The effects of stemflow on the formation of “Fertile Island” and “Salt Island” for Haloxylon ammodendron Bge[J]. Acta Ecologica Sinica, 2012, 32(15):4819-4826. ]
[17] 蒋慧萍, 吴楠, 杨维康. 大沙鼠扰动对荒漠土壤微生物数量和水肥状况的影响[J]. 干旱区研究, 2007, 24(2):187-192.
[17] [ Jiang Huiping, Wu Nan, Yang Weikang. Effects of Rhombomys opimus on microbial quantity, soil moisture content and soil nutrient content in a desert[J]. Arid Zone Research, 2007, 24(2):187-192. ]
[18] 刘江, 徐先英, 张荣娟, 等. 人工梭梭(Haloxylon ammodendron)林大沙鼠(Rhombomys opimus)鼠洞空间格局[J]. 中国沙漠, 2017, 37(6):1180-1188.
[18] [ Liu Jiang, Xu Xianying, Zhang Rongjuan, et al. Spatial pattern of holes of Rhombomys opimus in A Haloxylon ammodendron plantation site[J]. Journal of Desert Research, 2017, 37(6):1180-1188. ]
[19] 田永亮, 姬程鹏, 楚彬, 等. 高原鼢鼠挖掘活动对采食洞道土壤水肥的影响[J]. 草原与草坪, 2016, 36(4):16-20.
[19] [ Tian Yongliang, Ji Chengpeng, Chu Bin, et al. Effect of burrowing activity of plateau zokor (Myospalax baileyi) on soil moisture and nutrition in foraging tunnel[J]. Grassland and Turf, 2016, 36(4):16-20. ]
[20] 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2000.
[20] [ Bao Shidan, Soil Agro-chemistrical Analysis[M]. 3nd ed. Beijing: China Agriculture Press, 2000. ]
[21] 马涛, 郑江华, 温阿敏, 等. 基于无人机低空遥感的荒漠林大沙鼠鼠洞分布与地形的关系——以新疆古尔通古特沙漠南缘局部为例[J]. 林业科学, 2018, 54(10):180-188.
[21] [ Ma Tao, Zheng Jianghua, Wen Amin, et al. Relationship between the distribution of Rhombomys opimus holes and the topography in desert forests based on low-altitude remote sensing with the Unmanned Aerial Vehicle (UAV): A case study at the southern margin of the Gurbantunggut Desert in Xinjiang, China[J]. Scientia Silvae Sinicae, 2018, 54(10):180-188. ]
[22] 常兆丰, 马中华, 王大为, 等. 民勤荒漠气候变化的不稳定性分析[J]. 干旱区研究, 2016, 33(3):601-608.
[22] [ Chang Zhaofeng, Ma Zhonghua, Wang Dawei, et al. Instability of climate change in the Minqin Desert Area[J]. Arid Zone Research, 2016, 33(3):601-608. ]
[23] 石红霄, 于健龙. 高原鼠兔洞口密度对高寒嵩草草甸植被及土壤水分的影响[J]. 中国草地学报, 2010, 32(4):109-112, 116.
[23] [ Shi Hongxiao, Yu Jianlong. Influence of burrowing rodent density plots on the alpine Kobresia meadows structure and soil water content[J]. Chinese Journal of Grassland, 2010, 32(4):109-112, 116. ]
[24] 周雪荣. 青藏高原高寒草甸群落和土壤对高原鼠兔密度变化的响应[D]. 兰州: 兰州大学, 2010.
[24] [ Zhou Xuerong. The response of meadow plant communities and soil to density changes of Ochatona curzoniae in Qinghai-Tibetan Plateau[D]. Lanzhou: Lanzhou University, 2010. ]
[25] Andersen M C, Kay F R. Banner-tailed kangaroo rat burrow mounds and desert grassland habitats[J]. Journal of Arid Environments, 1999, 41(2):147-160.
[26] 柏新富, 朱建军, 王仲礼, 等. 干旱区木本植物盐分积累与其耐旱性的关系[J]. 林业科学, 2012, 48(7):45-49.
[26] [ Bai Xinfu, Zhu Jianjun, Wang Zhongli, et al. Relationship between the salt accumulation and the drought resistance in several woody plants in Arid Zone[J]. Scientia Silvae Sinicae, 2012, 48(7):45-49. ]
[27] He A L, Niu S Q, Zhao Q, et al. Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron[J]. International Journal of Molecular Sciences, 2018, 19(2):469.
[28] 邵帅, 何红波, 张威, 等. 土壤有机质形成与来源研究进展[J]. 吉林师范大学学报(自然科学版), 2017, 38(1):126-130.
[28] [ Shao Shuai, He Hongbo, Zhang Wei, et al. Soil organic matter formation and origin: A Review[J]. Journal of Jilin Normal University(Natural Science Edition), 2017, 38(1):126-130. ]
[29] 李文靖, 张堰铭. 高原鼠兔对高寒草甸土壤有机质及湿度的作用[J]. 兽类学报, 2006, 26(4):331-337.
[29] [ Li Wenjing, Zhang Yanming. Impacts of plateau pikas on soil organic matter and moisture content in alpine meadow[J]. Acta Theriologica Sinica, 2006, 26(4):331-337. ]
[30] 姬程鹏, 杨思维, 周延山, 等. 祁连山东段高原鼢鼠洞道土壤微生物和土壤酶[J]. 兽类学报, 2017, 37(3):284-292.
[30] [ Ji Chengpeng, Yang Siwei, Zhou Yanshan, et al. Soil microorganisms and enzymes in burrows of plateau zokor in eastern Qilian Mountain region[J]. Acta Theriologica Sinica, 2017, 37(3):284-292. ]
[31] Carlson D C, White E M. Effects of prairie dogs on mound soils[J]. Soil Science Society of American Journal, 1987, 51(2):389-393.
[32] Carlson D C, White E M. Variations in surface-layer color, texture, pH, and phosphorus content across prairie dogs mounds[J]. Soil Science Society of American Journal, 1988, 52(6):1758-1761.
[33] 徐满厚, 刘彤, 姜莉. 古尔班通古特沙漠南部梭梭鼠害特征及防治生态阈值研究[J]. 干旱区资源与环境, 2012, 26(6):126-133.
[33] [ Xu Manhou, Liu Tong, Jiang Li. Study on the harm characteristics of rodents to Haloxylon ammodendrom and its control for ecological threshold value in the south of Gurbantonggut Desert[J]. Journal of Arid Land Resources and Environment, 2012, 26(6):126-133. ]
[34] Carlson D C, White E M. Effects of prairie dogs on mound soils[J]. Soil Science Society of American Journal, 1987, 51(2):389-393.
[35] 王婷, 张永超, 赵之重. 青藏高原退化高寒湿地植被群落结构和土壤养分变化特征[J]. 草业学报, 2020, 29(4):9-18.
[35] [ Wang Ting, Zhang Yongchao, Zhao Zhizhong. Characteristics of the vegetation community and soil nutrient status in a degraded alpine wetland of Qinghai-Tibet Plateau[J]. Acta Prataculturae Sinica, 2020, 29(4):9-18. ]
Outlines

/