Ecology and Environment

Effects of climatic factors on litter decomposition and soil fauna in arid regions

Expand
  • Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Ningxia University, Yinchuan 750021, Ningxia, China

Received date: 2020-09-01

  Revised date: 2020-11-16

  Online published: 2021-06-17

Abstract

Detritus food webs dominated by soil fauna were the main method of litter decomposition and nutrient release, which plays a crucial role in maintaining the biogeochemical cycle and stability of fragile ecosystems. It was an interesting topic regarding the research on the effect of climate change on litter decomposition in arid and semi-arid regions. Climate change may have an important impact on litter decomposition, soil fauna, and related factors. However, there is no systematic summary of the underling mechanism. This review based on relevant literature at home and abroad, summarizes the impact of climate change (temperature, precipitation, and solar radiation) on litter decomposition, the impact of climate change (temperature and precipitation) on soil fauna, and impact of climate change on the relationship between litter decomposition and soil fauna. It was suggested that climate change affects the correlation between litter decomposition and soil fauna regarding changes in environmental factors and litter quality. We proposed that the following prospects should be paid more attention in the future: (1) large-scale and long-term research, as well as strict control experimental setup; (2) functional traits of soil fauna; (3) ecological functioning of soil fauna on litter decomposition. It is suggested that the litter and soil fauna ecological research should give more attention to the interaction of environmental factors under climate change, the variations of litter decomposition at different spatial scales, and model establishment.

Cite this article

ZHANG Anning,LIU Rentao,CHEN Wei,CHANG Haitao,JI Xueru . Effects of climatic factors on litter decomposition and soil fauna in arid regions[J]. Arid Zone Research, 2021 , 38(3) : 867 -874 . DOI: 10.13866/j.azr.2021.03.28

References

[1] Fu S, Zou X, Coleman D. Highlights and perspectives of soil biology and ecology research in China[J]. Soil Biology and Biochemistry, 2009,42:868-876.
[2] 张丹桔, 张健, 杨万勤, 等. 一个年龄序列巨桉人工林植物和土壤生物多样性[J]. 生态学报, 2013,33(13):3947-3962.
[2] [ Zhang Danji, Zhang Jian, Yang Wanqin, et al. Plant’s and soil organism’s diversity across a range of Eucalyptus grandis plantation ages[J]. Acta Ecologica Sinica, 2013,33(13):3947-3962. ]
[3] Atkinson R B, Cairns J. Plant decomposition and litter accumulation in depressional wetlands, functional performance of two wetland age classes that were created via excavation[J]. Wetlands, 2001,21:354-362.
[4] 张安宁, 刘任涛, 刘佳楠, 等. 干旱风沙区柠条枯落物对土壤节肢动物群落的影响[J]. 生态学杂志, 2020,39(7):2383-2391.
[4] [ Zhang Anning, Liu Rentao, Liu Jianan, et al. Effects of Caragana korshinskii litter on soil arthropod community in desertified region[J]. Chinese Journal of Ecology, 2020,39(7):2383-2391. ]
[5] Cameron W, Franz B S, Franco W, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(14):5266-5270.
[6] Jan Frouz. Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization[J]. Geoderma, 2017,332(15):161-172.
[7] Plaza C, Zaccone C, Sawicka K, et al. Soil resources and element stocks in drylands to face global issues[J]. Scientific Reports, 2018,8(1):13788.
[8] Van den Hoogen J, Geisen S, Routh D, et al. Soil nematode abundance and functional group composition at a global scale[J]. Nature, 2019,572(7768):194-198.
[9] Slade E M, Riutta T. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments[J]. Basic and Applied Ecology, 2012,13:423-431.
[10] Mathieu S, Adriane A, Estelle F, et al. Increasing temperature and decreasing specific leaf area amplify centipede predation impact on Collembola[J]. European Journal of Soil Biology, 2018,89:9-13.
[11] 张慧, 武海涛. 气候变暖对土壤动物群落结构的影响机制[J]. 生态学杂志, 2020,39(2):655-664.
[11] [ Zhang Hui, Wu Haitao. Research progresses in effects of climate warming on soil fauna community structure[J]. Chinese Journal of Ecology, 2020,39(2):655-664. ]
[12] Berdugo M, Delgado-Baquerizo M, Soliveres S, et al. Global ecosystem thresholds driven by aridity[J]. Science, 2020,367(6479):787-790.
[13] Veldhuis M P, Laso F J, Han O, et al. Termites promote resistance of decomposition to spatiotemporal variability in rainfall[J]. Ecology, 2017,98(2):467-477.
[14] 刘佳楠, 刘任涛, 赵娟, 等. 沙地柠条锦鸡儿灌丛枯落叶输入特征及对土壤理化性质的影响[J]. 干旱区资源与环境, 2018,32(11):169-175.
[14] [ Liu Jianan, Liu Rentao, Zhao Juan, et al. Leaflitter input of Caragana kornshinskii and its effect on soil properties in desertified grassland[J]. Journal of Arid Land Resources and Environment, 2018,32(11):169-175. ]
[15] Eisenhauer N, Herrmann S, Hines J, et al. The dark side of animal phenology[J]. Trends in Ecology & Evolution, 2018,33(12):898-901.
[16] 孟庆涛, 李玉霖, 赵学勇, 等. 科尔沁沙地不同环境条件下植物叶凋落物CO2释放研究[J]. 干旱区研究, 2008,25(4):519-524.
[16] [ Meng Qingtao, Li Yulin, Zhao Xueyong, et al. Study on CO2 release of leaf litters in different environment conditions in the Horqin Sandy land[J]. Arid Zone Research, 2008,25(4):519-524. ]
[17] Chuckran P F, Reibold R, Throop H L, et al. Multiple mechanisms determine the effect of warming on plant litter decomposition in a dryland[J]. Soil Biology and Biochemistry, 2020,145(1):107799.
[18] 牟钰, 贾昕, 郑甲佳, 等. 毛乌素沙地油蒿枯落物分解对增温的响应[J]. 北京林业大学学报, 2020,42(6):134-141.
[18] [ Mu Yu, Jia Xin, Zheng Jiajia, et al. Response of litter decomposition to warming of Artemisia ordosica in Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2020,42(6):134-141. ]
[19] 王其兵, 李凌浩, 白永飞, 等. 模拟气候变化对3种草原植物群落混合凋落物分解的影响[J]. 植物生态学报, 2000,24(6):674-679.
[19] [ Wang Qibing, Li Linghao, Bai Yongfei, et al. Effects of simulated climate change on the decomposition of mixed litter in three steppe communities[J]. Chinese Journal of Plant Ecology, 2000,24(6):519-524. ]
[20] Becker J N, Kuzyakov Y. Teatime on Mount Kilimanjaro: Assessing climate and land-use effects on litter decomposition and stabilization using the Tea Bag Index[J]. Land Degradation & Development, 2018,29(8):2321-2329.
[21] Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111:5266-5270.
[22] 霍利霞, 红梅, 赵巴音那木拉, 等. 氮沉降和降雨变化对荒漠草原凋落物分解的影响[J]. 生态学报, 2019,39(6):2139-2146.
[22] [ Huo Lixia, Hong Mei, Zhao Bayinnamula, et al. Effects of increased nitrogen deposition and changing rainfall patterns on litter decomposition in a desert grassland[J]. Acta Ecologica Sinica, 2019,39(6):2139-2146. ]
[23] 陈婷, 郗敏, 孔范龙, 等. 枯落物分解及其影响因素[J]. 生态学杂志, 2016,35(7):1927-1935.
[23] [ Chen Ting, Xi Min, Kong Fanlong, et al. A review on litter decomposition and influence factors[J]. Chinese Journal of Ecology, 2016,35(7):1927-1935. ]
[24] 叶贺, 红梅 赵巴音那木拉, 等. 水氮控制对短花针茅荒漠草原根系分解的影响[J]. 应用与环境生物学报, 2020,26(5):1169-1175.
[24] [ Ye He, Hong Mei, Zhao Bayinnamula, et al. Effects of water and nitrogen treatments on root decomposition of Stipa breviflora desert steppe[J]. Chinese Journal of Applied and Environmental Biology, 2020,26(5):1169-1175. ]
[25] 侯玲玲, 孙涛, 毛子军, 等. 小兴安岭不同林龄天然次生白桦林凋落物分解及养分变化[J]. 植物研究, 2012,32(4):492-496.
[25] [ Hou Lingling, Sun Tao, Mao Zijun, et al. Litter decomposition and nutrient dynamic of Betula platyphylla secondary forest with different stand ages in Xiaoxing’an Mountains[J]. Bulletin of Botanical Research, 2012,32(4):492-496. ]
[26] 和润莲, 陈亚梅, 邓长春, 等. 雪被期川西高山林线交错带两种地被物凋落物分解与土壤动物多样性[J]. 应用生态学报, 2015,26(3):723-731.
[26] [ He Runlian, Chen Yamei, Deng Changchun, et al. Litter decomposition and soil faunal diversity of two understory plant debris in the alpine timberline ecotone of western Sichuan in a snow cover season[J]. Chinese Journal of Applied Ecology, 2015,26(3):723-731. ]
[27] Jiang Y F, Yin X Q, Wang F B. The influence of litter mixing on decomposition and soil fauna assemblages in a Pinus koraiensis mixed broad-leaved forest of the Changbai Mountains, China[J]. European Journal of Soil Biology, 2013,55:28-39.
[28] 谢尧, 赵琼, 李炎真, 等. 干旱化对樟子松固沙林氮磷循环的影响[J]. 生态学杂志, 2019,38(12):3593-3600.
[28] [ Xie Yao, Zhao Qiong, Li Yanzhen, et al. Effects of aridification on nitrogen and phosphorus cycles in a Pinus sylvestis var. mongolica sand-fixation plantation[J]. Chinese Journal of Ecology, 2019,38(12):3593-3600. ]
[29] Robinson C H, Wookey P A, Parsons A N, et al. Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath[J]. Oikos, 1995,74(3):503-512.
[30] Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship[J]. Oikos, 1997,79(3):439-449.
[31] 赵庆云, 张武, 王式功, 等. 西北地区东部干旱-半干旱区极端降水事件的变化[J]. 中国沙漠, 2005,25(6):112-117.
[31] [ Zhao Qingyun, Zhang Wu, Wang Shigong, et al. Change of extreme precipitation events in arid and semi-arid regions in the east of Northwest China[J]. Journal of Desert Research, 2005,25(6):112-117. ]
[32] Schwinning S, Sala O E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems[J]. Oecologia, 2004,141(2):211-220.
[33] Pucheta E, Llanos M, Meglioli C, et al. Litter decomposition in a sandy Monte desert of western Argentina: Influences of vegetation patches and summer rainfall[J]. Austral Ecology, 2006,31(7):808-816.
[34] Jacobson K M, Jacobson P J. Rainfall regulates decomposition of buried cellulose in the Namib Desert[J]. Journal of Arid Environments, 1998,38(4):571-583.
[35] Moorhead D L, Callaghan T. Effects of increasing ultraviolet B radiation on decomposition and soil organic matter dynamics: A synjournal and modelling study[J]. Biology and Fertility of Soils, 1994,18(1):19-26.
[36] 周丽, 李彦, 唐立松, 等. 光降解在凋落物分解中的作用[J]. 生态学杂志, 2011,30(9):2045-2052.
[36] [ Zhou Li, Li Yan, Tang Lisong, et al. Roles of photodegradation in litter decomposition[J]. Chinese Journal of Ecology, 2011,30(9):2045-2052. ]
[37] 黄刚, 周丽, 唐立松, 等. 荒漠植物凋落物光降解特征随降水梯度的变化[J]. 生态学杂志, 2013,32(10):2574-2582.
[37] [ Huang Gang, Zhou Li, Tang Lisong, et al. Photodegradation of plant litter in a temperate desert along a precipitation gradient[J]. Chinese Journal of Ecology, 2013,32(10):2574-2582. ]
[38] 张慧玲, 宋新章, 哀建国, 等. 增强紫外线-B辐射对凋落物分解的影响研究综述[J]. 浙江林学院学报, 2010,27(1):134-142.
[38] [ Zhang Huiling, Song Xinzhang, Ai Jianguo, et al. A review of UV-B radiation and its influence on litter decomposition[J]. Journal of Zhejiang A & F University, 2010,27(1):134-142. ]
[39] Wu T, Su F, Han H, et al. Responses of soil microarthropods to warming and increased precipitation in a semiarid temperate steppe[J]. Applied Soil Ecology, 2014,84:200-207.
[40] 殷秀琴, 仲伟彦, 王海霞, 等. 小兴安岭森林落叶分解与土壤动物的作用[J]. 地理研究, 2002,21(6):689-699.
[40] [ Yin Xiuqin, Zhong Weiyan, Wang Haixia, et al. Decomposition of forest defoliation and role of soil animals in Xiao Hinggan Mountains[J]. Geographical Research, 2002,21(6):689-699. ]
[41] Bokhorst S, Convey P, Huiskes A, et al. Dwarf shrub and grass vegetation resistant to long-term experimental warming while microarthropod abundance declines on the Falkland Islands[J]. Austral Ecology, 2017,42(8):984-994.
[42] Huang Y M, Zhang J, Yang W Q, et al. Response of soil faunal community to simulated understory plant loss in the subalpine coniferous plantation of western Sichuan[J]. Acta Ecologica Sinica, 2010,30(8):2018-2025.
[43] Jean-Fran?ois D, Tanya H I. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change[J]. Biological Reviews of the Cambridge Philosophical Society, 2010,85(4):881-895.
[44] 德海山, 红梅, 赵巴音那木拉, 等. 模拟增温、施氮对荒漠草原土壤中小型动物群落的影响[J]. 干旱区资源与环境, 2016,30(6):122-128.
[44] [ De Haishan, Hong Mei, Zhao Bayinnamula, et al. Effect of simulated warming and N addition on soil mesofauna community in desert steppe of Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2016,30(6):122-128. ]
[45] Koltz A M, Classen A T, Wright J P. Warming reverses top-down effects of predators on belowground ecosystem function in Arctic tundra[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(32):7541-7549.
[46] Neher D A, Weicht T R, Moorhead D L, et al. Elevated CO2 alters functional attributes of nematode communities in forest soils[J]. Functional Ecology, 2004,18(4):37-44.
[47] Dijkstra F A, Augustine D J, Brewer P, et al. Nitrogen cycling and water pulses in semiarid grasslands: Are microbial and plant processes temporally asynchronous?[J]. Oecologia, 2012,170(3):799-808.
[48] Jenerette G D, Chatterjee A. Soil metabolic pulses: Water, substrate, and biological regulation[J]. Ecology, 2012,93(5):959-966.
[49] Wang S J, Ruan H H, Wang B, et al. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains[J]. Soil Biology and Biochemistry, 2009,41(5):891-897.
[50] Kaneda S, Kaneko N. Influence of Collembola on nitrogen mineralization varies with soil moisture content[J]. Soil Science and Plant Nutrition, 2011,57(1):40-49.
[51] Blankinship J C, Niklaus P A, Hungate B A. A meta-analysis of responses of soil biota to global change[J]. Oecologia, 2011,165(3):553-565.
[52] 刘继亮, 李锋瑞, 刘七军, 等. 黑河中游干旱荒漠地面节肢动物群落季节变异规律[J]. 草业学报, 2010,19(5):161-169.
[52] [ Liu Jiliang, Li Fengrui, Liu Qijun, et al. Seasonal variation of ground dwelling arthropod communities in an arid desert of the middle Heihe River basin[J]. Acta Prataculturae Sinica, 2010,19(5):161-169. ]
[53] Landesman W J, Treonis A M, Dighton J. Effects of a one-year rainfall manipulation on soil nematode abundances and community composition[J]. Pedobiologia-International Journal of Soil Biology, 2010,54(2):87-91.
[54] Hunt H W, Coleman D C, Ingham E R, et al. The detrital food web in a shortgrass prairie[J]. Biology and Fertility of Soils, 1987,3(1):57-68.
[55] Nieminen J K, Setl H. Influence of carbon and nutrient additions on a decomposer food chain and the growth of pine seedlings in microcosms-ScienceDirect[J]. Applied Soil Ecology, 2001,17(3):189-197.
[56] Hooper D U, Johnson L. Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation[J]. Biogeochemistry, 1999,46:247-293.
[57] Coleman D C. From peds to paradoxes: Linkages between soil biota and their influences on ecological processes[J]. Soil Biology and Biochemistry, 2008,40(2):271-289.
[58] Wu P F, Wang C T. Differences in spatiotemporal dynamics between soil macrofauna and mesofauna communities in forest ecosystems: The significance for soil fauna diversity monitoring[J]. Geoderma, 2019,337(25):266-272.
[59] 美丽, 红梅, 赵巴音那木拉, 等. 水氮控制对荒漠草原中小型土壤动物群落的影响[J]. 西北农林科技大学学报(自然科学版), 2018,46(4):75-84.
[59] [ Mei Li, Hong Mei, Zhao Bayinnamula, et al. Effect of water and N treatment on meso-and micro-fauna communities in soil of desert steppe[J]. Journal of Northwest A&F University (Natural Science Edition), 2018,46(4):75-84. ]
[60] Liu R, Steinberger Y. Seasonal distribution and diversity of ground-active arthropods between shrub microhabitats in the Negev Desert, Israel[J]. Arid Land Research & Management, 2017,32:91-110.
[61] 刘任涛, 郗伟华, 朱凡. 宁夏荒漠草原地面节肢动物群落组成及季节动态特征[J]. 草业学报, 2016,25(6):126-135.
[61] [ Liu Rentao, Xi Weihua, Zhu Fan. Community composition and seasonal dynamics of ground-dwelling arthropods in the desertified steppe of Ningxia[J]. Acta Prataculturae Sinica, 2016,25(6):126-135. ]
[62] Alejandro D, Canepuccia, Cicchino A, et al. Differential responses of marsh arthropods to rainfall-induced habitat loss[J]. Zoological Studies, 2009,48(2):174-183.
[63] 吴福忠, 谭波. 森林凋落物分解过程与土壤动物的相互关系研究进展[J]. 四川农业大学学报, 2018,36(5):569-575.
[63] [ Wu Fuzhong, Tan Bo. A review on the interactions between soil fauna and forest litter decomposition[J]. Journal of Sichuan Agricultural University, 2018,36(5):569-575. ]
[64] 严珺, 吴纪华. 植物多样性对土壤动物影响的研究进展[J]. 土壤, 2018,50(2):231-238.
[64] [ Yan Jun, Wu Jihua. Study advances in plant diversity effects on soil fauna[J]. Soils, 2018,50(2):231-238. ]
[65] 王文君, 杨万勤, 谭波, 等. 四川盆地亚热带常绿阔叶林不同物候期凋落物分解与土壤动物群落结构的关系[J]. 生态学报, 2013,33(18):5737-5750.
[65] [ Wang Wenjun, Yang Wanqin, Tan Bo, et al. The dynamics of soil fauna community during litter decomposition at different phenological stages in the subtropical evergreen broad-leaved forests in Sichuan basin[J]. Acta Ecologica Sinica, 2013,33(18):5737-5750. ]
[66] 谌亚, 杨万勤, 吴福忠, 等. 川西亚高山/高山森林土壤线虫多样性[J]. 应用生态学报, 2017,28(10):3360-3368.
[66] [ Kan Ya, Yang Wanqin, Wu Fuzhong, et al. Diversity of soil nematode communities in the subalpine and alpine forests of western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2017,28(10):3360-3368. ]
[67] 谭波. 季节性冻融对川西亚高山/高山森林土壤动物群落的影响[D]. 成都: 四川农业大学, 2010.
[67] [ Tan Bo. Soil Fauna Community in the Subalpine/Alpine Forests of Western Sichuan as Affected by Seasonal Freeze-thas[D]. Chengdu: Sichuan Agricultural University, 2010. ]
[68] Goncharov A A, Khramova E Y, Tiunov A V. Spatial variations in the trophic structure of soil animal communities in boreal forests of Pechora-Ilych Nature Reserve[J]. Eurasian Soil Science, 2014,47(5):441-448.
[69] Sanchez B C, Parmenter R R. Patterns of shrub-dwelling arthropod diversity across a desert shrubland-grassland ecotone: A test of island biogeographic theory[J]. Journal of Arid Environments, 2002,50(2):247-265.
[70] Holmstrup M, Damgaard C, Schmidt I K, et al. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland[J]. Scientific Reports, 2017,7:41388.
[71] Holmstrup M, Maraldo K, Krogh P H. Combined effect of copper and prolonged summer drought on soil Microarthropods in the field[J]. Environmental Pollution, 2007,146(2):525-533.
[72] Daghighi E, Filser J, Koehler H, et al. Long-term succession of Collembola communities in relation to climate change and vegetation[J]. Pedobiologia, 2017,64:25-38.
[73] Warren M W, Zou X. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico[J]. Forest Ecology & Management, 2002,170(1-3):161-171.
[74] Liu R T, Zhu F, Steinberger Y. Effectiveness of afforested shrub plantation on ground-active arthropod communities and trophic structure in desertified regions[J]. Catena, 2015,125(5):1-9.
[75] David J F, David J F. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change[J]. Biological Reviews, 2010,85(4):881-895.
[76] Robinson J V. The effect of architectural variation in habitat on a spider community: An experimental field study[J]. Ecology, 1981,62(10):73-80.
[77] Holmstrup M, Ehlers B K, Slotsbo S, et al. Functional diversity of Collembola is reduced in soils subjected to short-term, but not long-term, geothermal warming[J]. Functional Ecology, 2018,32(5):1304-1316.
[78] 査同刚, 张志强, 孙阁, 等. 凋落物分解主场效应及其土壤生物驱动[J]. 生态学报, 2012,32(24):7991-8000.
[78] [ Zha Tonggang, Zhang Zhiqiang, Sun Ge, et al. Home-field advantage of litter decomposition and its soil biological driving mechanism: A review[J]. Acta Ecologica Sinica, 2012,32(24):7991-8000. ]
[79] Gholz H L, Wedin D A, et al. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition[J]. Global Change Biology, 2000,6(7):751-765.
[80] Nielsen U N, Osler G H R, Campbell C D, et al. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale[J]. Journal of Biogeography, 2010,37(7):1317-1328.
[81] Kardol P, Reynolds W N, Norby R J, et al. Climate change effects on soil microarthropod abundance and community structure[J]. Applied Soil Ecology, 2011,47(1):37-44.
Outlines

/