Ecology and Environment

Effects of stand density on the biomass allocation and tree height-diameter allometric growth of Picea schrenkiana forest on the northern slope of the western Tianshan Mountains

Expand
  • 1. College of Resources and Environmental Sciences,Xinjiang University, Urumqi 830046, Xinjiang, China
    2. Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, Xinjiang, China

Received date: 2020-07-26

  Revised date: 2020-09-01

  Online published: 2021-04-25

Abstract

Picea schrenkiana is the dominant species widely distributed in the mountain forests on the northern slopes of the Tianshan Mountains. Determining the effects of individual density on the biomass allocation and height-diameter allometric relationship of P. schrenkiana forest is important to clarify the adaptation strategy of P. schrenkiana in different environments. In this paper, the effects of individual density on biomass allocation and the height-diameter allometric relationship of P. schrenkiana forest were studied based on fields investigations of P. schrenkiana forest with different stand densities (<300, 300-450, 450-600, >600 plants·hm-2). The results showed that the average biomass of all biomass components and branches alone decreased in P. schrenkiana forest when stand density increased. However, the biomass proportions of stems and roots increased, whereas the proportions of leaves and bark were stable. Both the height and the diameter at breast height (DBH) of the P. schrenkiana individuals decreased with increased stand density. Additionally, this study found that the relationship y=2.312 × x0.900 can be used to reliably delineate the allometric growth relationship between the height (H) and the DBH (D) of P. schrenkiana individuals (R2=0.761, P<0.01). With the increase in individual density, the relationship between lgH and lgD of P. schrenkiana individuals showed a complex nonlinear allometric growth relationship, and the significance of the relationship gradually reduced with density. This indicates that density had an impact on the resource competition of individuals and affected the growth of organs. The results can be used to inform the sustainable management of P. schrenkiana forest.

Cite this article

LI Zongying,LUO Qinghui,XU Zhonglin . Effects of stand density on the biomass allocation and tree height-diameter allometric growth of Picea schrenkiana forest on the northern slope of the western Tianshan Mountains[J]. Arid Zone Research, 2021 , 38(2) : 545 -552 . DOI: 10.13866/j.azr.2021.02.26

References

[1] Waring R H, Schlesinger W H. Forest ecosystems, concepts and management[J]. Clinical & Experimental Allergy, 1985,75:284.
[2] Kramer P J. Carbon dioxide concentration, photosynjournal, and dry matter production[J]. BioScience, 1981,31(1):29-33.
[3] 刘广文. 森林与碳循环[J]. 现代农业科技, 2007, (19):219-220.
[3] [ Liu Guangwen. Forest and carbon cycle[J]. Mordern Agricultural Science Technology, 2007, (19):219-220. ]
[4] Woodwell G M, Whittaker R H, Reiners W A, et al. The biota and the world carbon budget[J]. Science, 1978,199(4325):141-146.
[5] 范高华, 崔桢, 张金伟 . 等. 密度对尖头叶藜生物量分配格局及异速生长的影响[J]. 生态学报, 2017,37(15):5080-5090.
[5] [ Fan Gaohua, Cui Zhen, Zhang Jinwei, et al. Effects of population density on the biomass allocation and allometric growth of Chenopodium acuminatum[J]. Acta Ecologica Sinica, 2017,37(15):5080-5090. ]
[6] 郝建锋, 王德艺, 李艳, 等. 不同林分密度下川北白云山地区喜树人工林的群落结构和物种多样性[J]. 植物研究, 2015,35(5):772-778.
[6] [ Hao Jianfeng, Wang Deyi, Li Yan, et al. Effects of stand density on community structure and species diversity of Camptotheca acuminate plantation in Baiyun mountains, Mianzhu district, Sichuan Province[J]. Bulletin of Botanical Research, 2015,35(5):772-778. ]
[7] 康冰, 刘世荣, 蔡道雄, 等. 马尾松人工林林分密度对林下植被及土壤性质的影响[J]. 应用生态学报, 2009,20(10):2323-2331.
[7] [ Kang Bing, Liu Shirong, Cai Daoxiong, et al. Effects of Pinus massoniana plantation stand density on understory vegetation and soil properties[J]. Chinese Journal of Applied Ecology, 2009,20(10):2323-2331. ]
[8] Kitterge J. Estimation of amount of foliage of trees and shrubs[J]. Journal of Forestry, 1944,42:905-912.
[9] 王维枫, 雷渊才, 王雪峰, 等. 森林生物量模型综述[J]. 西北林学院学报, 2008,25(2):58-63.
[9] [ Wang Weifeng, Lei Yuancai, Wang Xuefeng, A review of forest biomass models[J]. Journal of Northwest Forestry University, 2008,25(2):58-63. ]
[10] 新疆森林编辑委员会. 新疆森林[M]. 北京: 中国林业出版社, 1989.
[10] [ Xinjiang Forest Editorial Committee. Xinjiang Forest[M]. Beijing: China Forestry Press, 1989. ]
[11] 张瑛山, 王学兰, 周林生. 雪岭云杉林生物量测定的初步研究[J]. 八一农学院学报, 1980(3):19-25.
[11] [ Zhang Yingshan, Wang Xuelan, Zhou Linsheng. Primary study on biomass of Picea schrenkiana[J]. PJournal of Xinjiang August 1st Agriculture College, 1980(3):19-25. ]
[12] 兰洁, 肖中琪, 李吉玫, 等. 天山雪岭云杉生物量分配格局及异速生长模型[J]. 浙江农林大学学报, 2020,37(3):416-423.
[12] [ Lan Jie, Xiao Zhongqi, Li Jimei. Biomass allocation and allometric growth of Picea schrenkiana in Tianshan mountain[J]. Journal of Zhejiang A&F University, 2020,37(3):416-423. ]
[13] 王燕, 赵士洞. 天山云杉林生物生产力的地理分布[J]. 植物生态学报, 2000,24(2):186-190.
[13] [ Wang Yan, Zhao Shidong. Productivity pattern of Pieca Schrenkiana Var. Tianschanica forest[J]. Acta Phytoecologica Sinica, 2000,24(2):186-190. ]
[14] 张绘芳, 高亚琪, 朱雅丽, 等. 新疆雪岭杉生物量模型对比研究[J]. 西北林学院学报, 2015,30(6):52-58.
[14] [ Zhang Huifang, Gao Yaqi, Zhu Yali. et al. A comparative study on biomass models for Picea schrenkiana in Xinjiang[J]. Journal of Northwest Forestry University, 2015,30(6):52-58. ]
[15] 孙雪娇, 常顺利, 张毓涛, 等. 矿区道路两侧雪岭云杉叶片重金属富集效应[J]. 生态学报, 2018,38(9):167-176.
[15] [ Sun Xuejiao, Chang Shunli, Zhang Yutao, et al. Accumulation of heavy metals in Picea schrenkiana leaves growing on roadsides in a mining area[J]. Acta Ecologica Sinica, 2018,38(9):167-176. ]
[16] 常亚鹏, 李路, 许仲林. 天山北坡雪岭云杉林地开垦的土壤有机碳损失估算[J]. 生态学报, 2017,37(4):1168-1173.
[16] [ Chang Yapeng, Li Lu, Xu Zhonglin. Estimation of soil organic carbon loss from Picea schrenkiana forest to farmland in the Northern Tianshan Mountains[J]. Acta Ecologica Sinica, 2017,37(4):1168-1173. ]
[17] 陈文静, 贡璐, 刘雨桐. 季节性雪被对天山雪岭云杉凋落叶分解和碳氮磷释放的影响[J]. 植物生态学报, 2018,42(4):487-497.
[17] [ Chen Wenjing, Gong Lu, Liu Yutong. Effects of seasonal snow cover on decomposition and carbon, nitrogen and phosphorus release of Picea schrenkiana leaf litter in Mt. Tianshan, Northwest China[J]. Chinese Journal of Plant Ecology, 2018,42(4):487-497. ]
[18] Hu L. Dynamic monitoring of Picea schrenkiana forest biomass in West Tianshan Mountain region of Xinjiang[J]. Scientia Silvae Sinicae, 2008,44(10):14-19.
[19] Yutao Z, Shuai H, Jimei L. Research on biomass and carbon storage of Picea schrenkiana var. tianshanica community in Central Tianshan mountain, Xinjiang[C]// International Conference on Chemistry & Chemical Engineering, IEEE, 2010: 97-101.
[20] 李路, 常亚鹏, 许仲林. 天山雪岭云杉林土壤CNP化学计量特征随水热梯度的变化[J]. 生态学报, 2018,38(22):8139-8148.
[20] [ Li Lu, Chang Yapeng, Xu Zhonglin. Stoichiometric characteristics of Picea schrenkiana forest with a hydrothermal gradient and their correlation with soil physicochemical factors on Tianshan mountain[J]. Acta Ecologica Sinica, 2018,38(22):8139-8148. ]
[21] 肖洒, 王刚, 李良. 毛乌素沙地油蒿与杨柴异速生长模式及个体大小的种内竞争调节[J]. 中国沙漠, 2003,23(1):69-74.
[21] [ Xiao Sa, Wang Gang, Li Liang. Adjustment of Artemisia ordosica and Hedysarum leaves allmetric pattern and individual’s size to the intra-species competition in Mu Us Sandland[J]. Journal of Desert Research, 2003,23(1):69-74. ]
[22] Peters R. The ecological implications of body size[J]. Journal of Applied Ecology, 1983,22(1):291.
[23] Niklas K J. Size-dependent variations in plant growth rates and the ‘?-power rule’[J]. American Journal of Botany, 1994,81(2):134-144.
[24] 方精, 韩文轩. 幂指数异速生长机制模型综述[J]. 植物生态学报, 2008,32(4):951-960.
[24] [ Fang Jing, Han Wenxuan. Review on the mechanism models of allometric scaling laws: 3/4 VS 2/3 Power[J]. Chinese Journal of Plant Ecology, 2008,32(4):951-960. ]
[25] Thomas W S C. Competition and allometry in three species of annual plants[J]. Ecology, 1992,73(2):648-656.
[26] 张思玉, 潘存德. 天山云杉人工幼林相容性生物量模型[J]. 森林与环境学报, 2002,22(3):201-204.
[26] [ Zhang Siyu, Pan Cunde. Study on the compatible biomass model of Picea schrenkiana young plantation[J]. Journal of Forest and Environment, 2002,22(3):201-204. ]
[27] 方奇. 不同密度杉木幼林系统生产力和生态效益研究[J]. 林业科学, 2000,36(增刊):28-35.
[27] [ Fang Qi. Study on productivity and ecologic benefits of young growth Chinese fir plantations systems in different densities[J]. Scientia Silvae Sinicae, 2000,36(Suppl. ): 28-35. ]
[28] 李国新, 黎颖锋, 邓炳权, 等. 广东郁南尾巨桉人工林密度效应[J]. 林业与环境科学, 2017,33(4):9-13.
[28] [ Li Guoxin, Li Yingfeng, Deng Bingquan, et al. Density effects on the growth of eucalyptus urophylla and E. grandis plantation in Yunan country, Guangdong province[J]. Forestry and Environmental Science, 2017,33(4):9-13. ]
[29] 杜国祯, 孙国钧, 王兮之, 等. 垂穗披碱草个体大小依赖的繁殖分配与种群密度的关系[J]. 草业学报, 1999(2):26-33.
[29] [ Du Guozhen, Sun Guojun, Wang Xizhi, et al. The relationship between individual size dependent reproductive distribution and population density of Lepidoptera litura[J]. Acta Ecologica Sinica, 1999(2):26-33. ]
[30] 安慧, 上官周平. 密度对刺槐幼苗生物量及异速生长模式的影响[J]. 林业科学, 2008,44(3):151-155.
[30] [ An Hui, Shangguan Zhouping, Effects of density on biomass and allometric pattern of Robinia pseudoacacia seedling[J]. Scientia Silvae Sinicae, 2008,44(3):151-155. ]
[31] 平晓燕, 贾丙瑞, 袁文平, 等. 羊草种群生物量分配动态模拟[J]. 应用生态学报, 2007,18(12):2699-2704.
[31] [ Ping Xiaoyan, Jia Bingrui, Yuan Wenping, et al. Biomass allocation of Leymus chinensis population: A dynamic simulation study[J]. Chinese Journal of Applied Ecology, 2007,18(12):2699-2704. ]
[32] 黄迎新, 赵学勇, 张洪轩, 等. 沙米表型可塑性对土壤养分、水分和种群密度变化的响应[J]. 应用生态学报, 2008,19(12):2593-2598.
[32] [ Huang Yingxin, Zhao Xueyong, Zhang Hongxuan, et al. Responses of Agriophyllum squarrosum phenotypic plasticity to the changes of soil nutrient and moisture contents and population density[J]. Chinese Journal of Applied Ecology, 2008,19(12):2593-2598. ]
[33] 陈静, 赵秋玲, 王军辉, 等. 梓树幼苗生物量和异速生长模式的密度效应研究[J]. 林业实用技术, 2012(5):9-12.
[33] [ Chen Jing, Zhao Qiuling, Wang Junhui, et al. Study on the density effect of catalpa seedling biomass and heterogenous growth model[J]. Applied Forestry Technology, 2012(5):9-12. ]
[34] 孙志蓉, 翟明普, 王文全, 等. 密度对甘草苗生长及甘草酸含量的影响[J]. 中国中药杂志, 2007,32(21):2222-2226.
[34] [ Sun Zhirong, Zhai Mingpu, Wang Wenquan, et al. Effects of density on seedling growth and glycyrrhizinic acid content in Glycyrrhiza uralensis[J]. China Journal of Chinese Materia Medica, 2007,32(21):2222-2226. ]
[35] 孙志蓉, 翟明普, 王文全, 等. 密度对小叶锦鸡儿播种苗生长的影响[J]. 北京林业大学学报, 2007,29(1):42-46.
[35] [ Sun Zhirong, Zhai Mingpu, Wang Wenquan, et al. Effects of density on seedling growth of Caragana microphylla Lam.[J]. Journal of Beijing Forestry University, 2007,29(1):42-46. ]
[36] Givnish T. Adaptation to sun and shade: A whole-plant perspective[J]. Functional Plant Biology, 1988,15(2):63-02.
Outlines

/