Weather and Climate

Picea schrenkiana response to climate change at different altitudes in Tianshan Mountains

Expand
  • 1. College of Resources and Environment Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
    2. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, Xinjiang, China
    3. Key Laboratory of Tree-ring Physicochemical Research of China Meteorological Administration, Urumqi 830002, Xinjiang, China

Received date: 2020-06-28

  Revised date: 2020-10-17

  Online published: 2021-04-25

Abstract

In order to study the difference in the response of radial growth of Picea schrenkiana to climate factors at different altitudes, the core samples of schrenk spruce were collected from the low, middle and high altitudes forest areas in the Nilka Kashi river basin of the Western Tianshan Mountains, the tree ring-width standard dendrochronology at different altitude was established. The result of correlation analysis between tree ring chronology and meteorological data showed that, The chronology of the three sampling points mainly responded to temperature and relative humidity, but responded weakly to precipitation. The radial growth of tree ring at high and low altitudes had the same response to temperature and relative humidity, both of which have positive response to temperature, and negative response to relative humidity, while the radial growth at middle altitude was opposite to high and low altitudes. Since the study area occured abrupt climate change in 1991, the width of schrenk spruce appeared the “growth differentiation”, the tree-ring width index of low-high altitudes showed a downward trend, while the middle altitude showed an upward trend. Before and after the abrupt transition point, the radial growth of trees had an unstable response to temperature and relative humidity. The positive correlation of the mid-altitude chronology to the temperature from May to September and the negative correlation to the relative humidity were significantly enhanced, The low and high altitude chronology had a significant negative correlation with the temperature from July to August, and a significant positive correlation with the relative humidity from June to August. According to the response model of schrenk spruce to climate factors, the rapid warming will lead to intensified evaporation, and the relative humidity decrease, which may cause negative effects on the growth of schrenk spruce in the low and high altitude forest, and the appropriate temperature increase may promote the growth of schrenk spruce in the middle forest.

Cite this article

Shirenna Jiahan,ZHANG Tongwen,YU Shulong,JIANG Shengxia,XU Zhonglin . Picea schrenkiana response to climate change at different altitudes in Tianshan Mountains[J]. Arid Zone Research, 2021 , 38(2) : 327 -338 . DOI: 10.13866/j.azr.2021.02.04

References

[1] 季飞. 北半球中高纬干旱半干旱区强化增温现象研究[D]. 兰州: 兰州大学, 2015.
[1] [ Ji Fei. Enhanced Arid and Semi-arid Warming over Mid-high Latitudes of Northern Hemesphere[D]. Lanzhou: Lanzhou University, 2015. ]
[2] 刘国华, 傅伯杰. 全球气候变化对森林生态系统的影响[J]. 自然资源学报, 2001,16(1):71-78.
[2] [ Liu Guohua, Fu Bojie. Effects of global climate change on forest ecosystems[J]. Journal of Natural Resources, 2001,16(1):71-78. ]
[3] Wu X, Liu H, Wang Y, et al. Prolonged limitation of tree growth due to warmer spring in semi-arid mountain forests of Tianshan, northwest China[J]. Environmental Research Letters, 2013,8(2):024016.
[4] 高琳琳, 勾晓华, 邓洋, 等. 树轮气候学中分异现象的研究进展[J]. 冰川冻土, 2011,33(2):453-460.
[4] [ Gao Linlin, Gou Xiaohua, Deng Yang, et al. An overview of the divergence phenomenon in dendroclimatology[J]. Journal of Glaciology and Geocryology, 2011,33(2):453-460. ]
[5] D’Arrigo R, Wilson R, Liepert B, et al. On the ‘Divergence Problem’ in Northern forests: A review of the tree-ring evidence and possible causes[J]. Global Planetary Change, 2008,60(3-4):289-305.
[6] Wilmking M, Juday G P, Barber V A, et al. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds[J]. Global Change Biology, 2004,10:1724-1736.
[7] Kurz-Besson C B, Lousada J L, Gaspar M J, et al Effects of recent minimum temperature and water deficit increases on Pinus pinaster radial growth and wood density in southern portugal[J]. Frontiers in Plant Science, 2014,7(12):1170-1170.
[8] 李广起, 白帆, 桑卫国. 长白山红松和鱼鳞云杉在分布上限的径向生长对气候变暖的不同响应[J]. 植物生态学报, 2011,35(5):500-511.
[8] [ Li Guangqi, Bai Fan, Sang Weiguo. Different responses of radial growth to climate warming in Pinus koraiensis and Picea jezoensis var. komarovii at their upper elevational limits in Changbai Mountain, China[J]. Chinese Journal of Plant Ecology, 2011,35(5):500-511. ]
[9] 赵学鹏, 白学平, 李俊霞, 等. 气候变暖背景下不同海拔长白落叶松对气候变化的响应[J]. 生态学杂志, 2019,38(3):637-647.
[9] [ Zhao Xuepeng, Bai Xueping, Li Junxia, et al. Response of Larix olgensis at different elevations to climate change in the context of climate warming[J]. Chinese Journal of Ecology, 2019,38(3):637-647. ]
[10] 杨绕琼, 范泽鑫, 李宗善, 等. 滇西北玉龙雪山不同海拔云南松(Pinus yunnanensis)径向生长对气候因子的响应[J]. 生态学报, 2018,38(24):8983-8991.
[10] [ Yang Raoqiong, Fan Zexin, Li Zongshan, et al. Radial growth of Pinus yunnanensis at different elevations and their responses to climatic factors in the Yulong Snow Mountain, Northwest Yunnan, China[J]. Acta Ecologica Sinica, 2018,38(24):8983-8991. ]
[11] Wilmking M, Juday G P, Barber V A, et al. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds[J]. Global Change Biology, 2004,10:1724-1736.
[12] Ulf Büntgen, Frank D C, Schmidhalter M, et al. Growth/climate response shift in a long subalpine spruce chronology[J]. Trees, 2006,20(1):99-110.
[13] 于健, 徐倩倩, 刘文慧, 等. 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应[J]. 植物生态学报, 2016,40(1):24-35.
[13] [ Yu Jian, Xu Qianqian, Liu Wenhui, et al. Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China[J]. Chinese Journal of Plant Ecology, 2016,40(1):24-35. ]
[14] Vila B, Vennetier M, Ripert C, et al. Has global change induced divergent trends in radial growth of Pinus sylvestris and Pinus halepensisat their bioclimatic limit? The example of the Sainte-Baume forest (south-east France)[J]. Annals of Forest Science, 2008,65(7):709-709.
[15] 周子建, 江源, 董满宇, 等. 长白山北坡不同海拔红松径向生长-气候因子关系对气温突变的响应[J]. 生态学报, 2018,38(13):4668-4676.
[15] [ Zhou Zijian, Jiang Yuan, Dong Manyu, et al. Response of the relationship between radial growth and climatic factors to abrupt change of temperature along an altitudinal gradient on the northern slope of Changbai Mountain, Northeast China[J]. Acta Ecologica Sinica, 2018,38(13):4668-4676. ]
[16] Zhang T, Zhang R, Jiang S, et al. On the ‘Divergence Problem’ in the Alatau Mountains, Central Asia: A study of the responses of schrenk spruce tree-ring width to climate under the recent warming and wetting trend[J]. Atmosphere, 2019,10(8):473.
[17] 张晴, 于瑞德, 郑宏伟, 等. 天山东部不同海拔西伯利亚落叶松对气候变暖的响应分析[J]. 植物研究, 2018,38(1):14-25.
[17] [ Zhang Qing, Yu Ruide, Zheng Hongwei, et al. Response analysis of Larix sibirica to climate warming at different elevations in the Eastern Tianshan Mountains[J]. Bulletin of Botanical Research, 2018,38(1):14-25. ]
[18] 喻树龙, 袁玉江, 金海龙, 等. 用树木年轮重建天山北坡中西部7~8月379 a的降水量[J]. 冰川冻土, 2005,27(3):404-410.
[18] [ Yu Shulong, Yuan Yujiang, Jin Hailong, et al. A 379-year July-August precipitation series reconstructed from tree-ring on the midwestern part of the Northern Slopes of Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2005,27(3):404-410. ]
[19] 张同文, 王丽丽, 袁玉江, 等. 利用树轮宽度资料重建天山中段南坡巴仑台地区过去645年来的降水变化[J]. 地理科学, 2011,31(2):251-256.
[19] [ Zhang Tongwen, Wang Lili, Yuan Yujiang, et al. A 645-year precipitation reconstruction in Baluntai egion on southern slope of mid-Tianshan Mountains based on tree-ring width[J]. Acta Geographica Sinica, 2011,31(2):251-256. ]
[20] 齐元元, 尚华明, 张瑞波, 等. 利用树轮重建玛纳斯河流域过去289 a降水变化[J]. 干旱区研究, 2017,34(4):942-949.
[20] [ Qi Yuanyuan, Shang Huaming, Zhang Ruibo, et al. The 289-year variation of precipitation reconstructed with tree-ring data in the Manas River Basin[J]. Arid Zone Research, 2017,34(4):942-949. ]
[21] 彭正兵, 李新建, 张瑞波, 等. 不同去趋势方法的新疆东天山高低海拔雪岭云杉树轮宽度年表对气候的响应[J]. 生态学报, 2019,39(5):1595-1604.
[21] [ Peng Zhengbing, Li Xinjian, Zhang Ruibo, et al. The response of tree-ring chronologies of Schrenk spruce (Picea schrenkiana Fisch. et Mey. ) to climate change at high-and low-elevations of the eastern Tianshan Mountains, Xinjiang, using different detrending methods[J]. Acta Ecologica Sinica, 2019,39(5):1595-1604. ]
[22] Jiao L, Jiang Y, Wang M, et al. Responses to climate change in radial growth of Picea schrenkiana along elevations of the eastern Tianshan Mountains, northwest China[J]. Dendrochronologia, 2016,40:117-127.
[23] 张瑞波. 基于树轮的中亚西天山干湿变化研究[D]. 兰州: 兰州大学, 2017.
[23] [ Zhang Ruibo. Tree-Ring-Based Droughts Variability in Western Tianshan Mountains[D]. Lanzhou: lanzhou University, 2017. ]
[24] 霍玉侠. 树轮宽度记录的新疆北疆地区气候变化研究[D]. 兰州: 兰州大学, 2017.
[24] [ Huo Yuxia. Tree-Ring Width Records of Past Climate Variability in North Xinjiang[D]. Lanzhou: lanzhou University, 2017. ]
[25] 杜海燕, 常顺利, 宋成程, 等. 天山雪岭云杉森林菌根真菌多样性及其影响因子[J]. 干旱区研究, 2019,36(5):1194-1201.
[25] [ Du Haiyan, Chang Shunli, Song Chengcheng, et al. Diversity of mycorrhizal fungi of Picea schrenkiana forest and its affecting factors in the Tianshan Mountains[J]. Arid Zone Research, 2019,36(5):1194-1201. ]
[26] 伊建平, 张海州, 李留振, 等. 天山中部雪岭云杉树木年轮宽度与气候因子关系[J]. 林业建设, 2008(2):48-51.
[26] [ Yi Jianping, Zhang Haizhou, Li Liuzhen, et al. Relationship between tree-ring width of Picea schrenkiana and climatic factors in the middle area of Tianshan mountain[J]. Forestry Construction, 2008(2):48-51. ]
[27] Stokes M A. An Introduction to Tree-Ring Dating[M]. Arizona: University of Arizona Press, 1996: 1-61.
[28] Douglass A E. Crossdating in Dendrochronology[J]. Journal of Forestry-Washington, 1941,39(10):825-831.
[29] Evin J. Tree ring and climate[J]. Geobios, 1977,10(2):315-318.
[30] 王波, 陈拓, 徐国保, 等. 祁连山中部祁连圆柏林线树木生长与积雪响应关系研究[J]. 冰川冻土, 2015,37(2):318-326.
[30] [ Wang Bo, Chen Tuo, Xu Guobao, et al. The relationships between snow cover and Sabina przewalskii radial growth at alpine timberlines in the middle Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2015,37(2):318-326. ]
[31] 喻树龙, 李淑娟, 姜盛夏, 等. 天山北坡雪岭云杉树轮宽度年表梯度特征分析[J]. 沙漠与绿洲气象, 2020,14(2):1-9.
[31] [ Yu Shulong, Li Shujuan, Jiang Shengxia, et al. Gradient chronology features of Picea schrenkiana in the north slope of Tianshan Mountains[J]. Desert and Oasis Meteorology, 2020,14(2):1-9. ]
[32] Cook E R, Kairiukstis L A. Methods of Dendrochronology[M]. Holland: Springer, Dordrecht, 1990.
[33] Wigley T M L, Briffa K R, Jones P D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology[J]. Journal of Climatology & Applied Meteorology, 1984,23(2):201-213.
[34] 杨美琳, 他志杰, 吴燕良, 等. 树轮宽度记录的塔吉克斯坦北部160 a平均最低气温变化[J]. 干旱区研究, 2019,36(2):290-295.
[34] [ Yang Meilin, Ta Zhijie, Wu Yanliang, et al. Tree-ring-based reconstruction of minimum temperature in North Tajikistan in recent 160 years[J]. Arid Zone Research, 2019,36(2):290-295. ]
[35] 邵雪梅, 吴祥定. 华山树木年轮年表的建立[J]. 地理学报, 1994,49(2):174-181.
[35] [ Shao Xuemei, Wu Xiangding. Tree-ring chronologies for Pinus armandi Franch from Huashan, China[J]. Acta Geographica Sinica, 1994,49(2):174-181. ]
[36] 高露双, 赵秀海, 张赟. 温度、降水与树木径向生长关系研究现状[J]. 浙江林业科技, 2007,27(4):76-79.
[36] [ Gao Lushuang, Zhao Xiuhai, Zhang Yun. Researches situation on relation between temperature and precipitation and tree diameter increment[J]. Journal of Zhejiang Forestry Science and Technology, 2007,27(4):76-79. ]
[37] 张艳静, 郑宏伟, 于瑞德, 等. 天山中西段不同地区雪岭云杉径向生长对气候变暖的响应差异[J]. 植物研究, 2017,37(3):340-350.
[37] [ Zhang Yanjing, Zheng Hongwei, Yu Ruide, et al. Response differences of radial growth of Picea schrenkiana to climate warming in midwestern Tianshan Mountains[J]. Bulletin of Botanical Research, 2017,37(3):340-350. ]
[38] 曹宗英, 勾晓华, 刘文火, 等. 祁连山中部青海云杉上下限树轮宽度年表对气候的响应差异[J]. 干旱区资源与环境, 2014,28(7):29-34.
[38] [ Cao Zongying, Gou Xiaohua, Liu Wenhuo, et al. Response of tree-ring to the climate factors at upper and lower elevation in the middle region of Qilian Mountains[J]. Journal of Arid Land Resources and Environment, 2014,28(7):29-34. ]
[39] 吴祥定. 树木年轮与气候变化[M]. 北京: 气象出版社, 1990: 83-85.
[39] [ Wu Xiangding. Tree Rings and Climate Change[M]. Beijing: China Meteorological Press, 1990: 83-85. ]
[40] 张瑞波, 袁玉江, 魏文寿, 等. 天山山区树轮气候研究若干进展[J]. 沙漠与绿洲气象, 2016,10(4):1-9.
[40] [ Zhang Ruibo, Yuan Yujiang, Wei Wenshou, et al. Research advances of dendroclimatology in Tianshan Mountains[J]. Desert and Oasis Meteorology, 2016,10(4):1-9. ]
[41] 范玮熠, 王孝安. 树木年轮宽度与气候因子的关系研究进展[J]. 西北植物学报, 2004,24(2):345-351.
[41] [ Fan Weiyi, Wang Xiao’an. Advances in studies on the relationships between tree-ring width and climatic factors[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004,24(2):345-351. ]
[42] 李淑娟, 喻树龙, 尚华明, 等. 新疆西天山不同海拔雪岭云杉树轮宽度年表特征及其气候响应分析[J]. 沙漠与绿洲气象, 2017,11(1):50-57.
[42] [ Li Shujuan, Yu Shulong, Shang Huaming, et al. Tree-ring chronology features and climatic response of Picea schrenkiana along altitude gradient in the West Tianshan Montains, China[J]. Desert and Oasis Meteorology, 2017,11(1):50-57. ]
[43] 黄小梅, 肖丁木, 秦宁生. 基于树轮宽度的澜沧江源区干旱重建[J]. 干旱区研究, 2019,36(2):280-289.
[43] [ Huang Xiaomei, Xiao Dingmu, Qin Ningsheng. Drought reconstruction based on tree-ring width in headwaters of the Lancang River[J]. Arid Zone Research, 2019,36(2):280-289. ]
[44] 尚华明, 魏文寿, 袁玉江, 等. 天山北坡东部树轮宽度和稳定碳同位素的环境响应分析[J]. 沙漠与绿洲气象, 2010,4(5):6-10.
[44] [ Shang Huaming, Wei Wenshou, Yuan Yujiang, et al. Environmental response of tree-ring width and stable carbon isotope at North Slope of Eastern Tianshan Mountains[J]. Desert and Oasis Meteorology, 2010,4(5):6-10. ]
[45] 彭剑峰, 勾晓华, 陈发虎, 等. 天山云杉和西伯利亚落叶松的树轮气候记录[J]. 生态环境, 2005,14(4):460-465.
[45] [ Peng Jianfeng, Gou Xiaohua, Chen Fahu, et al. Climatic records of tree-ring width in Picea schrenkiana Fisch and Larix sibirica Ledb[J]. Ecology and Environment Sciences, 2005,14(4):460-465. ]
[46] 彭剑峰, 勾晓华, 陈发虎, 等. 天山东部西伯利亚落叶松树轮生长对气候要素的响应分析[J]. 生态学报, 2006,26(8):2723-2731.
[46] [ Peng Jianfeng, Gou Xiaohua, Chen Fahu. et al. The responses of growth ring width variations of Larix sibirica Ledb to climatic change in eastern Tianshan Mountains[J]. Acta Ecologica Sinica, 2006,26(8):2723-2731. ]
[47] 桑卫国, 王云霞, 苏宏新, 等. 天山云杉树轮宽度对梯度水分因子的响应[J]. 科学通报, 2007,52(19):2292-2298.
[47] [ Sang Weiguo, Wang Yunxia, Su Hongxin, et al. Response analysis between tree-ring widths and climatic factors to gradient moisture factor in Tianshan Mountains Northwestern China[J]. Chinese Science Bulletin, 2007,52(19):2292-2298. ]
[48] 张永香, 邵雪梅, 徐岩, 等. 利用生理模型模拟的柴达木东北缘祁连圆柏对气候要素的响应过程[J]. 科学通报, 2011,56(12):975-982.
[48] [ Zhang Yongxiang, Shao Xuemei, Xu Yan, et al. Process based modeling analyses of Sabina przewalskii growth response to climate factors around the northeastern Qaidam Basin[J]. Chinese Science Bulletin, 2011,56(12):975-982. ]
[49] 吴燕良, 甘淼, 于瑞德, 等. 基于树轮生理模型的雪岭云杉径向生长的模拟研究[J]. 干旱区地理, 2020,43(1):64-71.
[49] [ Wu Yanliang, Gan Miao, Yu Ruide, et al. Process-based modeling radial growth of Picea schrenkiana in the eastern Tianshan Mountains[J]. Arid Land Geography, 2020,43(1):64-71. ]
[50] 张山清, 普宗朝. 基于DEM的乌鲁木齐河流域降水量时空变化分析[J]. 中国农业气象, 2011,32(3):437-443.
[50] [ Zhang Shanqing, Pu Zongchao. Analysis of precipitation change characteristic in Urunqi River Basin based on DEM[J]. Chinese Journal of Agrometeorology, 2011,32(3):437-443. ]
[51] 朱海峰, 王丽丽, 邵雪梅, 等. 雪岭云杉树轮宽度对气候变化的响应[J]. 地理学报, 2004,59(6):863-870.
[51] [ Zhu Haifeng, Wang Lili, Shao Xuemei, et al. Tree ring-width response of Picea schrenkiana to climate change[J]. Acta Geographica Sinica, 2004,59(6):863-870. ]
[52] 齐元元, 魏文寿, 袁玉江, 等. 玛纳斯河流域不同海拔树轮宽度年表特征及其对气候响应的对比分析[J]. 沙漠与绿洲气象, 2013,7(6):36-41.
[52] [ Qi Yuanyuan, Wei Wenshou, Yuan Yujiang, et al. Characteristics of tree-ring width chronologies and their response to climate for different elevations in Manasi River Basin[J]. Desert and Oasis Meteorology, 2013,7(6):36-41. ]
[53] 张录, 袁玉江, 魏文寿, 等. 1671—2006年伊犁尼勒克地区7—8月降水序列的重建与分析[J]. 冰川冻土, 2010,32(5):914-920.
[53] [ Zhang Lu, Yuan Yujiang, Wei Wenshou, et al. Reconstruction and analysis of the 336-a July and August precipitation series in Nilka County, Xinjing[J]. Journal of Glaciology and Geocryology, 2010,32(5):914-920. ]
[54] 徐国保, 刘晓宏, 秦大河, 等. 树木年轮δ18O记录的中国西北阿尔泰山区相对湿度变化[J]. 科学通报, 2014,59(15):1478.
[54] [ Xu Guobao, Liu Xiaohong, Qin Dahe, et al. Relative humidity reconstruction for northwestern China’s Altay Mountains using tree-ring δ18O[J]. Chinese Science Bulletin, 2014,59(15):1478. ]
[55] Fritts H C, Smith D G, Cardis J W, et al. Tree-ring characteristics along a vegetation gradient in Northern Arizona[J]. Ecology, 1965,46(4):394-401.
[56] 陈峰, 袁玉江, 魏文寿, 等. 树轮记录的伊犁地区近354年帕尔默干旱指数变化[J]. 高原气象, 2011,30(2):355-362.
[56] [ Chen Feng, Yuan Yujiang, Wei Wenshou, et al. Variations of long-term Palmer drought index in recent 354 years in Yili based on tree-ring record[J]. Plateau Meteorology, 2011,30(2):355-362. ]
[57] 雷静品, 封晓辉, 施征, 等. 海拔梯度上青海云杉径向生长与气候关系稳定性研究[J]. 西北植物学报, 2012,32(12):2518-2529.
[57] [ Lei Jingpin, Feng Xiaohui, Shi Zheng, et al. Stability of relationship between climate and Picea crassifolia radial growth in different elevations[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012,32(12):2518-2529. ]
[58] 焦亮, 王玲玲, 李丽, 等. 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应[J]. 植物生态学报, 2019,43(4):320-330.
[58] [ Jiao liang, Wang Lingling, Li Li, et al. Divergent responses of radial growth of Larix sibirica to climate change in Altay Mountains of Xinjiang, China[J]. Chinese Journal of Plant Ecology 2019,43(4):320-330. ]
[59] 刘蕊, 王勇辉, 姜盛夏, 等. 哈萨克斯坦阿尔泰山树木径向生长及其对气候要素的响应[J]. 干旱区研究, 2019,36(3):723-733.
[59] [ Liu Rui, Wang Yonghui, Jiang Shengxia, et al. Radial growth of trees in response to climatic factorsin the Altai Mountains, south of Kazakhstan[J]. Arid Zone Research, 2019,36(3):723-733. ]
Outlines

/