Soil Resources

Variation of soil moisture content in vegetation restoration area of sandy land at east shore of Qinghai Lake

Expand
  • 1. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xi’ning 810016, Qinghai, China
    2. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China

Received date: 2020-05-07

  Revised date: 2020-08-03

  Online published: 2021-03-05

Abstract

Spatial-temporal heterogeneity of soil moisture is the main driving force for variation of vegetation patterns and processes in the desert, directly affecting plant growth in arid and semi-arid regions. Here, we used the dunes of planted sand-fixing plants (Populus sylvestris, Pinus sylvestris, Hippophae rhamnoides, and Salix cheilophila) at the eastern sandy shore of Qinghai Lake as study site and compared them to natural fixed dunes dominated by Artemisia ordosica. Our objectives were to analyze how soil’s moisture and geomorphological features influence the plants’ distribution in alpine semi-arid sandy lands. Our results showed that: (1) Precipitation, vegetation transpiration, soil’s surface evaporation were the main environmental features affecting soil’s seasonal moisture content, that varied among species, but that was the highest in July; (2) Depending on the dune’s position, soil moisture content might be different, even for the same species: Populus simonii had the most increased soil’s moisture content windward, while P. sylvestris, H. rhamnoides, and S. cheilophila had the most increased soil’s moisture content when leeward, and A. ordosica had the highest soil’s moisture content at dune’s top. However, geomorphology only played a significant difference in soil’s moisture content for S. cheilophila (P<0.05). Soil’s water content for different species in the same position was also different: At the windward, soil’s water content for P. sylvestris was 1. 81% and that of A. ordosica was 3.48%. At the dune’s top, the soil’s water content for S. cheilophila was 1. 82%, while that for A. ordosica was 3.58%. There was no significant difference in soil’s moisture content among species at the leeward, but that for S. cheilophila was 3.41%; (3) Soil’s moisture varied with depth and was the highest at 10-20 cm. The soil’s moisture vertical distribution also varied according to the plant species: it increased with depth with P. simonii and H. rhamnoides, while it gradually decreased with increasing soil depth for the other species. The soil’s water content decreased with soil’s depth for P. sylvestris and P. sylvestris, while it showed no noticeable change with H. rhamnoides and A. sylvestris up to 120 cm in depth. A varying soil’s water content was observed with S. cheilophila in different geomorphological positions and soil layers, which showed that no obvious change on the windward, lowering of the chest and increasing of the leeward. The soil’s moisture content distribution with different vegetation restoration measures in alpine semi-arid sandy land was affected by precipitation, soil distribution, species type, plant root distribution, and dunes’ micro-topography.

Cite this article

WANG Haijiao,TIAN Lihui,ZHANG Dengshan,WANG Qiaoyu . Variation of soil moisture content in vegetation restoration area of sandy land at east shore of Qinghai Lake[J]. Arid Zone Research, 2021 , 38(1) : 76 -86 . DOI: 10.13866/j.azr.2021.01.09

References

[1] Sperry J S, Hacke U G. Desert shrub water relations with respect to soil characteristics and plant functional type[J]. Functional Ecology, 2002,16:367-378.
[2] D'Odorico P Bhattachan A Davis K F, et al. Global desertification: Drivers and feedbacks[J]. Advance Water Resources, 2013,51:326-344.
[3] Li X Y, Yang D W, Zheng C M, et al. Ecohydrology, 2017, DOI: 10.1007/978-981-10-1884-8_18.
[4] Deng J, Li J, Deng G, et al. Fractal scaling of particle-size distribution and associations with soil properties of Mongolian pine plantations in the Mu Us Desert, China[J]. Scientific Reports, 2017,7(1): doi: 10.1038/s41598-017-06709-8.
[5] Ehleringer J R, Dawson T E. Water uptake by plants: Perspectives from stable isotope composition[J]. Plant Cell and Environment, 1992,15:1073-1082.
[6] 李小雁. 干旱地区土壤-植被-水文、耦合、响应与适应机制[J]. 中国科学: 地球科学, 2011,41(12):1721-1730.
[6] [ Li Xiaoyan. Mechanism of coupling, response and adaptation between soil, vegetation and hydrology in arid and semiarid regions[J]. Scientia Sinica Terrae, 2011,41(12):1721-1730. ]
[7] 李新荣, 赵洋, 回嵘, 等. 中国干旱区恢复生态学研究进展及趋势评述[J]. 地理科学进展, 2014,33(11):1435-1443.
[7] [ Li Xinrong, Zhao Yang, Hui Rong, et al. Progress and trend of development of restoration ecology research in the arid regions of China[J]. Progress in Geography, 2014,33(11):1435-1443. ]
[8] Schlesinger W H, Raikes J A, Hartley A E, et al. On the spatial pattern of soil nutrients in desert ecosystems[J]. Ecology, 1996,77:364-374.
[9] Li X R, Zhang Z S, Tan H J, et al. Ecological restoration and recovery in the wind-blown sand hazard areas of Northern China: Relationship between soil water and carrying capacity for vegetation in the Tengger Desert[J]. Science China: Life Science, 2014,57(5):539-548.
[10] 李新荣, 马凤云, 龙立群, 等. 沙坡头地区固沙植被土壤水分动态研究[J]. 中国沙漠, 2001,21(3):217-222.
[10] [ Li Xinrong, Ma Fengyun, Long Liqun, et al. Soil water dynamics under sand-fixing vegetation in Shapotou area[J]. Journal of Desert Research, 2001,21(3):217-222. ]
[11] 王翔宇, 张进虎, 丁国栋, 等. 沙地土壤水分特征及水分时空动态分析[J]. 水土保持学报, 2008,22(6):222-227.
[11] [ Wang Xiangyu, Zhang Jinhu, Ding Guodong, et al. Study on the temporal and spacial change of soil water content and soil moisture characteristics of sandy land[J]. Journal of Soil and Water Conservation, 2008,22(6):222-227. ]
[12] 李振山, 王怡, 贺丽敏. 干旱区沙质草地植被覆盖变化模拟 Ⅰ. 模型[J]. 中国沙漠, 2008,28(3):417-422.
[12] [ Li Zhenshan, Wang Yi, He Limin. Simulation method of vegetation coverage in arid sandy grassland I. Models[J]. Journal of Desert Research, 2008,28(3):417-422. ]
[13] Pan Y X, Wang X P, Jia R L, et al. Spatial variability of surfacce soil moisture content in a revegetated desert area in Shapotou, Northern China[J]. Journal of Arid Environments, 2008,72:1675-1683.
[14] 朱玉伟, 陈启民, 刘茂秀, 等. 古尔班通古特沙漠南缘沙丘水分的时空分布特征[J]. 草业科学, 2008,25(12):6-11.
[14] [ Zhu Yuwei, Chen Qimin, Liu Maoxiu, et al. Spatiotemporal distribution of moisture content in sand dunes of the unirrigated forestation along the southern marginal zone of Gurbantunggut Desert[J]. Pratacultural Science, 2008,25(12):6-11. ]
[15] 鲁瑞洁, 唐清亮, 桑艳礼, 等. 青海湖克土沙区不同类型沙丘土壤水分的动态变化[J]. 水土保持研究, 2012,19(2):111-115.
[15] [ Lu Ruijie, Tang Qingliang, Sang Yanli, et al. Dynamic changes of soil moisture in different dunes of Ketu sand land in Qinghai Lake basin[J]. Research of Soil and Water Conservation, 2012,19(2):111-115. ]
[16] 王俏雨, 田丽慧, 张登山, 等. 高寒沙地柠条群落土壤水分空间分布特征研究[J]. 青海大学学报, 2019,37(3):8-15.
[16] [ Wang Qiaoyu, Tian Lihui, Zhang Dengshan, et al. Spatial variability of soil water content of Caragana korshinskii communities in alpine sandy land[J]. Journal of Qinghai University, 2019,37(3):8-15. ]
[17] 李少华, 张立恒, 王学全, 等. 高寒灌木固沙区土壤性状与植被生长特征的相关分析[J]. 干旱区研究, 2017,34(6):1331-1337.
[17] [ Li Shaohua, Zhang Liheng, Wang Xuequan, et al. Soil properties and shrub growth in an alpine sandy area[J]. Arid Zone Research, 2017,34(6):1331-1337. ]
[18] 中国科学院兰州分院. 青海湖近代环境的演化和预测[M]. 北京: 科学出版社, 1994: 2.
[18] [ Lanzhou Branch Chinese Academy of Sciences. Evolution and Prediction of Environment in Qinghai Lake [M]. Beijing: Science Press, 1994: 2. ]
[19] 张登山, 高尚玉, 石蒙沂. 青海高原土地沙漠化及其防治[M]. 北京: 科学出版社, 2009: 10.
[19] [ Zhang Dengshan, Gao Shangyu, Shi Mengyi. Desertification and Its Control in Qinghai Plateau[M]. Beijing: Science Press, 2009: 10. ]
[20] 张登山, 石昊, 魏殿生, 等. 青海湖流域人工治沙措施防风固沙效益初步研究[J]. 地球环境学报, 2010,3(1):239-242.
[20] [ Zhang Dengshan, Shi Hao, Wei Diansheng, et al. Effects of artificial measures on wind-breaking and sand-fixation in Qinghai Lake drainage area[J]. Journal of Earth Environment, 2010,3(1):239-242. ]
[21] 吴汪洋, 张登山, 田丽慧, 等. 近10年青海湖东沙地人工植被群落特征研究[J]. 生态学报, 2019,39(6):2109-2121.
[21] [ Wu Wangyang, Zhang Dengshan, Tian Lihui, et al. Features of artificial plant communities from the east sand region of the Qinghai Lake over the last 10 years[J]. Acta Ecologica Sinica, 2019,39(6):2109-2121. ]
[22] 赵以莲, 周国英, 陈桂琛. 青海湖区东部沙地植被及其特征研究[J]. 中国沙漠, 2007,27(5):820-825.
[22] [ Zhao Yilian, Zhou Guoying, Chen Guichen. Sandy vegetation and its characteristics in east of Qinghai Lake area[J]. Journal of Desert Research, 2007,27(5):820-825. ]
[23] 鲁瑞洁, 唐清亮, 魏殿生, 等. 青海湖湖东沙地不同沙丘降雨入渗研究[J]. 中国沙漠, 2013,33(3):797-803.
[23] [ Lu Ruijie, Tang Qingliang, Wei Diansheng, et al. Rainwater infiltration at dunes under various rainfall events in sandy land to the east of Qinghai Lake[J]. Journal of Desert Research, 2013,33(3):797-803. ]
[24] 王正宁, 王新平. 荒漠灌丛树干茎流及其入渗、再分配特征[J]. 中国沙漠, 2010,30(5):1108-1113.
[24] [ Wang Zhengning, Wang Xinping. Stemflow of Caragana korshinskii and its infiltration and redistribution in desert environment[J]. Journal of Desert Research, 2010,30(5):1108-1113. ]
[25] Pan Y X, Wang X P. Factors controlling the spatial variability of surface soil moisture within revegetated-stabilized desert ecosystems of the Tengger Desert, Northern China[J]. Hydrological Processes, 2009,23:1591-1601.
[26] Hawley M E, Jackson T J, McCuen R H. Surface soil moisture variation on small agricultural watersheds[J]. Journal of Hydrology, 1983,62:179-200.
[27] 冯起, 高前兆, 苏培玺, 等. 半湿润地区植被影响下的沙地水分动态[J]. 干旱区研究, 1994,11(4):58-63.
[27] [ Feng Qi, Gao Qianzhao, Su Peixi, et al. Study soil water variability of sandy land influencing by vegetation in the semi-humid zone[J]. Arid Zone Research, 1994,11(4):58-63. ]
[28] 张登山, 田丽慧, 鲁瑞洁, 等. 青海湖湖东沙地风沙沉积物的粒度特征[J]. 干旱区地理, 2013,36(2):203-211.
[28] [ Zhang Dengshan, Tian Lihui, Lu Ruijie, et al. Grain-size features of aeolian deposits in the eastern shore of Qinghai Lake[J]. Arid Land Geography, 2013,36(2):203-211. ]
[29] Richards J H, Caldwell M M. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots[J]. Oecologia, 1987,73(4):486-489.
[30] 石莎, 马风云, 刘立超, 等. 沙坡头地区不同植被结构对沙地土壤水分的影响[J]. 中央民族大学学报(自然科学版), 2004,13(2):137-142.
[30] [ Shi Sha, Ma Fengyun, Liu Lichao, et al. The effect on different vegetation structure to soil water contents in Shapoto region[J]. Journal of Minzu University of China (Natural Sciences Edition), 2004,13(2):137-142. ]
[31] 孜尔蝶·巴合提, 贾国栋, 余新晓, 等. 基于稳定同位素分析不同退化程度小叶杨水分来源[J]. 应用生态学报, 2020,31(6):1807-1816.
[31] [ Zierdie Baheti, Jia Guodong, Yu Xinxiao, et al. Assessing water sources for Populus simonii with different degrees of degradation based on stable isotopes[J]. Chinese Journal of Applied Ecology, 2020,31(6):1807-1816. ]
[32] Zhou H, Zhao W Z, He Z B, et al. Variation in depth of water uptake for Pinus sylvestris var. mongolica along a precipitation gradient in sandy regions[J]. Journal of Hydrology, 2019,577:1-11.
[33] 于洋, 贾志清, 朱雅娟, 等. 高寒沙地乌柳(Salix cheilophila)林根系分布特征[J]. 中国沙漠, 2014,34(1):67-74.
[33] [ Yu Yang, Jia Zhiqing, Zhu Yajuan, et al. Root distribution of Salix cheilophila along a chronosequence in high-cold sandland[J]. Journal of Desert Research, 2014,34(1):67-74. ]
[34] Wu H W, Li X Y, Jiang Z Y, et al. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai-Tibet Plateau, China[J]. Science of the Total Environment, 2016,542:182-191.
[35] 鲁瑞洁, 刘小槺, 李金凤, 等. 青海湖地区典型固沙植物对根下土壤改良作用的初步研究[J]. 水土保持学报, 2015,29(4):177-181.
[35] [ Lu Ruijie, Liu Xiaokang, Li Jinfeng, et al. Effects of typical sand-fixing plant on soil improvement in Qinghai Lake[J]. Journal of Soil and Water Conservation, 2015,29(4):177-181. ]
[36] 张立恒, 李清雪, 王学全, 等. 高寒沙区中间锦鸡儿人工林细根动态及其周转[J]. 干旱区研究, 2020,37(1):212-219.
[36] [ Zhang Liheng, Li Qingxue, Wang Xuequan, et al. Biomass dynamics and turnover of fine rcoots of Caragana intermedia plantations in alpine sandy land[J]. Arid Zone Research, 2020,37(1):212-219. ]
[37] 潘颜霞, 王新平, 苏延桂, 等. 荒漠人工固沙植被区土壤水分的时空变异性[J]. 生态学报, 2009,29(2):993-1000.
[37] [ Pan Yanxia, Wang Xinping, Su Yangui, et al. Temporal and spatial variability of surface soil moisture in a re-vegetation desert area in Shapotou[J]. Acta Ecologica Sinica, 2009,29(2):993-1000. ]
[38] 王博, 段玉玺, 王伟峰, 等. 人工固沙区植被演替过程中土壤水分时空分异特征[J]. 干旱区研究, 2020,37(4):881-889 .
[38] [ Wang Bo, Duan Yuxi, Wang Weifeng, et al. Spatial and temporal variability of soil water content during vegetation succession in sand-binding area[J]. Arid Zone Research, 2020,37(4):881-889. ]
[39] 移小勇, 赵哈林, 李玉霖, 等. 科尔沁沙地不同风沙土的风蚀特征[J]. 水土保持学报, 2006,20(2):10-13, 53.
[39] [ Yi Xiaoyong, Zhao Halin, Li Yulin, et al. Wind erosion characteristics of aeolian soils in Horqin sandy land[J]. Journal of Soil and Water Conservation, 20(2):10-13, 53. ]
[40] 孙姗姗, 刘新平, 魏水莲, 等. 沙地植物幼苗生长对降水和风速变化的响应[J]. 干旱区研究, 2019,36(4):870-877.
[40] [ Sun Shanshan, Liu Xinping, Wei Shuilian, et al. Response of plant seedling growth to the changes in precipitation and wind velocity in Horqin sandy land[J]. Arid Zone Research, 2019,36(4):870-877. ]
Outlines

/