The influence of alpine meadow degradation on soil conductivity change
Received date: 2020-08-03
Revised date: 2020-09-24
Online published: 2021-03-05
Grassland degradation is a complex and long-term process, and the most apparent sign of its occurrence is vegetation degradation (e.g., vegetation community composition, productivity, and spatial structure). During this process, soil physical-chemical properties change, impoverishing the soil and making it arider. Soil electric conductivity is an index for measuring the water-soluble salinity, reflecting soil salinization. To explore how the soil conductivity changes during the degradation of alpine meadow, whether the soil conductivity presents a regular change with the degradation of alpine meadow, just like the physical-chemical characteristics of vegetation and soil. Therefore, to analyze the influence of alpine meadow degradation on soil conductivity, we studied the undergraded and degraded alpine meadows in the Three River Source Region. We adopted a statistical test method to systematically analyze the relationship between vegetation and soil characteristics and the degraded alpine meadow’s soil conductivity. The degradation of alpine meadow significantly affected the vegetation coverage and biomass, causing the reduction of total soil nitrogen, organic matter, and moisture, turning it more infertile. We found that alpine meadow’s degradation negatively impacted soil conductivity. The soil conductivity showed a consistent trend with alpine meadow’s degradation indexes, including vegetation coverage, aboveground biomass, soil organic matter, and total nitrogen content. Therefore, we believe that alpine meadow’s degradation will change soil conductivity, and that these parameters can be used as an index of the degree of soil salinization and meadow degradation. Our study aims to reveal the characteristics of vegetation-soil conductivity during the alpine meadow’s degradation process, enrich the evaluation indexes of degraded alpine meadow, and provide a scientific basis for the early warning and restoration management of degraded alpine meadow.
WANG Yingcheng,LU Guangxin,ZHAO Lirong,DENG Ye,WANG Junbang . The influence of alpine meadow degradation on soil conductivity change[J]. Arid Zone Research, 2021 , 38(1) : 104 -113 . DOI: 10.13866/j.azr.2021.01.12
[1] | 冯超, 古松, 赵亮, 等. 青藏高原三江源区退化草地生态系统的地表反照率特征[J]. 高原气象, 2010,29(1):70-77. |
[1] | [ Feng Chao, Gu Song, Zhao Liang, et al. Albedo characteristics of degraded grassland ecosystem in the source region of Three Rivers in Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2010,29(1):70-77. ] |
[2] | 王建兵, 张德罡, 曹广民, 等. 青藏高原高寒草甸退化演替的分区特征[J]. 草业学报, 2013,22(2):1-10. |
[2] | [ Wang Jianbing, Zhang Degang, Cao Guangmin, et al. Regional characteristics of the alpine meadow degradation succession on the Qinhai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2013,22(2):1-10. ] |
[3] | 曹文炳, 万力, 曾亦键, 等. 气候变暖对黄河源区生态环境的影响[J]. 地学前缘, 2006,13(1):40-47. |
[3] | [ Cao Wenbing, Wan Li, Zeng Yijian, et al. Impacts of global warming on the eco-environment in the headwater region of the Yellow River[J]. Earth Science Frontiers, 2006,13(1):40-47. ] |
[4] | 张森琦, 王永贵, 赵永真, 等. 黄河源区多年冻土退化及其环境反映[J]. 冰川冻土, 2004,26(1):1-6. |
[4] | [ Zhang Senqi, Wang Yonggui, Zhao Yongzhen, et al. Permafrost degradation and its environmental sequent in the source regions of the Yellow River[J]. Journal of Glaciology and Geocryology, 2004,26(1):1-6. ] |
[5] | Huakun Zhou, Xinquan Zhao, Yanhong Tang, et al. Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China[J]. Grassland Science, 2005,51(3):191-203. |
[6] | 薛艳庆. 囊谦县“黑土滩”退化草地现状及治理对策[J]. 草业与畜牧, 2007(8):56-57. |
[6] | [ Xue Yanqing. Current situation and countermeasures of degraded grassland of “black soil type” in nangqian county[J]. Prataculture and Animal Husbandry, 2007(8):56-57. ] |
[7] | 尚占环, 龙瑞军. 青藏高原“黑土型”退化草地成因与恢复[J]. 生态学杂志, 2005,24(6):652-656. |
[7] | [ Shang Zhanhuan, Long Ruijun. Formation reason and recovering problem of the‘black soil type’ degraded alpine grassland in Qinghai-Tibetan Plateau[J]. Chinese Journal of Ecology, 2005,24(6):652-656. ] |
[8] | 周华坤, 赵新全, 周立, 等. 青藏高原高寒嵩草草甸的植被退化与土壤退化特征研究[J]. 草业学报, 2005,14(3):31-40. |
[8] | [ Zhou Huakun, Zhao Xinquan, Zhou Li, et al. A study on correlations between vegetation degradation and soil degradation in the ‘Alpine Meadow’ of the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2005,14(3):31-40. ] |
[9] | 杨利民, 韩海, 阎志坚, 等. 松嫩平原主要草地群落放牧退化阶段的划分[J]. 草地学报, 1996,6(4):31-36. |
[9] | [ Yang Limin, Han Hai, Yan Zhijian, et al. Division on degenerate successional stages of main grassland communities for giazing in the Songnen Plain of China[J]. Acta Agrestia Sinca, 1996,6(4):31-36. ] |
[10] | 李以康, 林丽, 张法伟, 等. 嵩草草甸退化和恢复过程中主要牧草演替和地表特征变化[J]. 草业学报, 2010,19(5):179-185. |
[10] | [ Li Yikang, Lin Li, Zhang Fawei, et al. The main forage succession and ground surface characteristic changes during degradation and restoration of alpine Kobresia meadow[J]. Acta Prataculturae Sinica, 2010,19(5):179-185. ] |
[11] | 侯扶江, 南志标, 肖金玉, 等. 重牧退化草地的植被、土壤及其耦合特征[J]. 应用生态学报, 2002,13(8):915-922. |
[11] | [ Hou Fujiang, Nan Zhibiao, Xiao Jinyu, et al. Characteristics of vegetation, soil, and their coupling of degraded grasslands[J]. Chinese Journal of Applied Ecology, 2002,13(8):915-922. ] |
[12] | 陈乐乐, 施建军, 王彦龙, 等. 高寒地区不同退化程度草地群落结构特征研究[J]. 草地学报, 2016,24(1):210-213. |
[12] | [ Chen Lele, Shi Jianjun, Wang Yanlong, et al. Study on different degraded degrees grassland community structure characteristics of the alpine area[J]. Acta Agrestia Sinica, 2016,24(1):210-213. ] |
[13] | 张静, 李希来, 王金山, 等. 三江源地区不同退化程度草地群落结构特征的变化[J]. 湖北农业科学, 2009,48(9):2125-2129. |
[13] | [ Zhang Jing, Li Xilai, Wang Jinshan, et al. Analysis on plant community structure in different degradation grassland in the Sanjiangyuan Region[J]. Hubei Agricultural Sciences, 2009,48(9):2125-2129. ] |
[14] | 左小安, 赵学勇, 赵哈林, 等. 科尔沁沙质草地群落物种多样性、生产力与土壤特性的关系[J]. 环境科学, 2007,28(5):945-951. |
[14] | [ Zuo Xiao’an, Zhao Xueyong, Zhao Halin, et al. Changes of species diversity and productivity in relation to soil properties in Sandy Grassland in Horqin Sand Land[J]. Environmental Science, 2007,28(5):945-951. ] |
[15] | 孙海群, 林冠军, 李希来, 等. 三江源地区高寒草甸不同退化草地植被群落结构及生产力分析[J]. 黑龙江畜牧兽医, 2013,56(19):1-3. |
[15] | [ Sun Haiqun, Lin Guanjun, Li Xilai, et al. Analysis of vegetation community structure and productivity of different degraded grasslands of alpine meadows in the Sanjiangyuan area[J]. Heilongjiang Journal of Animal Husbandry and Veterinary Medicine, 2013,56(19):1-3. ] |
[16] | 刘玉, 马玉寿, 施建军, 等. 大通河上游高寒草甸植物群落的退化特征[J]. 草业科学, 2013,30(7):1082-1088. |
[16] | [ Liu Yu, Ma Yushou, Shi Jianjun, et al. Community characteristics of alpine meadow under different degrees of degradation in the upper area of Datong River[J]. Pratacultural Science, 2013,30(7):1082-1088. ] |
[17] | 周华坤, 赵新全, 温军, 等. 黄河源区高寒草原的植被退化与土壤退化特征[J]. 草业学报, 2012,21(5):1-11. |
[17] | [ Zhou Huakun, Zhao Xinquan, Wen Jun, et al. The characteristics of soil vegetation of degenerated alpine steppe in the Yellow River Source Region[J]. Acta Prataculturae Sinica, 2012,21(5):1-11. ] |
[18] | 刘广明, 杨劲松. 土壤含盐量与土壤电导率及水分含量关系的试验研究[J]. 土壤通报, 2001,32(1):85-87. |
[18] | [ Liu Guangming, Yang Jinsong. Study on the correlation of soil content with electric conductivity and soil water content[J]. Chinese Journal of Soil Science, 2001,32(1):85-87. ] |
[19] | 吴红宝, 水宏伟, 胡国铮, 等. 海拔对藏北高寒草地物种多样性和生物量的影响[J]. 生态环境学报, 2019,28(6):1071-1079. |
[19] | [ Wu Hongbao, Shui Hongwei, Hu Guozheng, et al. Species diversity and biomass distribution patterns of alpine grassland along an elevation gradient in the Northern Tibetan Plateau[J]. Ecology and Environmental Sciences, 2019,28(6):1071-1079. ] |
[20] | 刘燕, 李世雄, 尹亚丽, 等. 基于Biolog指纹解析黑土滩退化草地土壤微生物群落特征[J]. 生态环境学报, 2019,28(7):1394-1403. |
[20] | [ Liu Yan, Li Shixiong, Yin Yali, et al. Analysis on soil microbial community characteristics of black soil beach degraded grassland based on biolog fingerprint[J]. Ecology and Environmental Sciences, 2019,28(7):1394-1403. ] |
[21] | 董全民, 周华坤, 施建军, 等. 高寒草地健康定量评价及生产—生态功能提升技术集成与示范[J]. 青海科技, 2018,25(1):15-24. |
[21] | [ Dong Quanmin, Zhou Huakun, Shi Jianjun, et al. Quantitative health evaluation and production of alpine grassland integration and demonstration of ecological function improvement technology[J]. Qinghai Science and Technology, 2018,25(1):15-24. ] |
[22] | 罗亚勇, 孟庆涛, 张静辉, 等. 青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系[J]. 冰川冻土, 2014,36(5):1298-1305. |
[22] | [ Luo Yayong, Meng Qingtao, Zhang Jinghui, et al. Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibetan-Plateau in different degradation stages[J]. Journal of Glaciology and Geocryology, 2014,36(5):1298-1305. ] |
[23] | 祁彪, 张德罡, 丁玲玲, 等. 退化高寒干旱草地植物群落多样性特征[J]. 甘肃农业大学学报, 2005,47(5):50-55. |
[23] | [ Qi Biao, Zhang Degang, Ding Lingling, et al. Properties of plant community diversity of degraded alpine arid g rasslands[J]. Journal of Gansu Agricultural University, 2005,47(5):50-55. ] |
[24] | 李里, 刘伟. 退化草地植物功能群和物种丰富度与群落生产力关系的研究[J]. 草地学报, 2011,19(6):917-921. |
[24] | [ Li Li, Liu Wei. Relationship between plant functional groups, species richness and community’s productivity in degraded grassland[J]. Acta Agrestia Sinica, 2011,19(6):917-921. ] |
[25] | 仁青吉, 崔现亮, 赵彬彬. 放牧对高寒草甸植物群落结构及生产力的影响[J]. 草业学报, 2008,17(6):134-140. |
[25] | [ Ren Qingji, Cui Xianliang, Zhao Binbin. Effects of grazing impact on community structure and productivity in an alpine meadow[J]. Acta Prataculturae Sinica, 2008,17(6):134-140. ] |
[26] | 田安红, 赵俊三, 张顺吉, 等. 基于分数阶微分的盐渍土电导率高光谱估算研究[J]. 中国生态农业学报, 2020,28(4):599-607. |
[26] | [ Tian Anhong, Zhao Junsan, Zhang Shunji, et al. Hyperspectral estimation of saline soil electrical conductivity based on fractional derivative[J]. Chinese Journal of Eco-Agriculture, 2020,28(4):599-607. ] |
[27] | 李天才, 陈桂琛, 曹广民, 等. 青海湖北岸草地土壤和植物钠、锶、锂矿质元素含量与草地植被特征的关系[J]. 草原与草坪, 2012,32(6):17-22. |
[27] | [ Li Tiancai, Chen Guichen, Cao Guangmin, et al. Correlation between mineral elements Na, Sr, Li contents and plant characteristics in grassland on the north bank of Qinghai Lake[J]. Grassland and Turf, 2012,32(6):17-22. ] |
[28] | 李天才, 陈桂琛, 曹广民, 等. 青海湖北岸退化草地和封育草地中钾、钙、镁等矿质常量元素特征[J]. 草地学报, 2011,19(5):752-759. |
[28] | [ Li Tiancai, Chen Guichen, Cao Guangmin, et al. Characteristics of mineral elements K, Ca, Mg in degraded grassland and enclosure grassland on the North Bank of Qinghai Lake[J]. Acta Agresia Sinica, 2011,19(5):752-759. ] |
[29] | 孙长宏. 玉树典型嵩草草甸植物及土壤特性初探[J]. 草业科学, 2013,30(8):1161-1166. |
[29] | [ Sun Changhong. Comparison of plant and soil characters between healthy and degraded Kobresia meadows in Yushu, Qinghai[J]. Pratacultural Science, 2013,30(8):1161-1166. ] |
[30] | 魏卫东, 刘育红, 马辉. 高寒草甸退化草地土壤有机碳含量Meta分析研究[J]. 环境科学与管理, 2018,43(10):53-58. |
[30] | [ Wei Weidong, Liu Yuhong, Ma Hui. Meta-analysis for soil organic carbon content of degraded grassland on alpine meadow[J]. Environmental Science and Management, 2018,43(10):53-58. ] |
[31] | 袁知洋, 邓邦良, 郭晓敏, 等. 武功山山地草甸土壤全量氮磷钾分布格局及对不同退化程度的响应[J]. 西北林学院学报, 2015,30(3):14-20. |
[31] | [ Yuan Zhiyang, Deng Bangliang, Guo Xiaomin, et al. Soil total NPK’s distribution pattern and response to different degradation degrees in Wugong Mountain meadow[J]. Journal of Northeast Forestry University, 2015,30(3):14-20. ] |
[32] | 高海宁, 张勇, 秦嘉海, 等. 祁连山黑河上游不同退化草地有机碳和酶活性分布特征[J]. 草地学报, 2014,22(2):283-290. |
[32] | [ Gao Haining, Zhang Yong, Qin Jiahai, et al. Organic carbon distribution and enzyme activites of different degraded meadows soil in upstream of Heihe of Qilian Mountains[J]. Acta Agestia Sinica, 2014,22(2):283-290. ] |
[33] | 陈玫妃, 曾辉, 王钧. 青藏高原高寒草地土壤水分生态特征研究现状[J]. 中国草地学报, 2015,37(2):94-101. |
[33] | [ Chen Meifei, Zeng Hui, Wang Jun. Research progress in the ecological charactewistics of soil water in Alpine Grasslands on the Qinhai-Tibetan Plateau[J]. Chinese Journal of Grassland, 2015,37(2):94-101. ] |
[34] | 杨永胜, 张莉, 未亚西, 等. 退化程度对三江源泽库高寒草甸土壤理化性质及持水能力的影响[J]. 中国草地学报, 2017,39(5):54-61. |
[34] | [ Yang Yongsheng, Zhang Li, Wei Yaxi, et al. Effects of degradation degree on soil physicochemical properties and soil water-holding capacity in Zeku alpine meadow in the headwater region of Three Rivers in China[J]. Chinese Journal of Grassland, 2017,39(5):54-61. ] |
[35] | Jiang Y, Hao W, Zhang Y G, et al. Geostatistical analyses of soil electrical conductivity in a vegetable greenhouse field with different data sets[J]. Journal of Environmental Research, 2008,2:125-130. |
[36] | Zhang R, Wienhold B J. The effect of soil moisture on mineral nitrogen, soil electrical conductivity, and pH[J]. Nutrient cycling in Agroecosystems, 2002,63:251-254. |
[37] | 韩跃, 马风云, 解国磊, 等. 黄河三角洲盐碱地混交林土壤电导率的空间异质性[J]. 中国水土保持科学, 2014,12(5):84-89. |
[37] | [ Han Yue, Ma Fengyun, Xie Guolei, et al. Spatial heterogeneity of soil electrical conductivity in a mixed plantation of the Yellow River Delta saline land[J]. Science of Soil and Water Conservation, 2014,12(5):84-89. ] |
[38] | 姚世庭, 芦光新, 王军邦, 等. 模拟增温对土壤电导率的影响[J]. 干旱区研究, 2020,37(3):598-606. |
[38] | [ Yao Shiting, Lu Guangxin, Wang Junbang, et al. Effect of simulated warming on soil conductivity[J]. Arid Zone Research, 2020,37(3):598-606. ] |
[39] | 王维维, 麦麦提吐尔逊·艾则孜, 艾提业古丽·热西提, 等. 焉耆盆地农田耕层土壤盐分的空间变异及分布格局[J]. 干旱地区农业研究, 2019,37(2):195-201. |
[39] | [ Wang Weiwei, Mamattursun Eziz, Atiyagul Rixitr, et al. Spatial variability and distribution pattern of soil salinity factors in topsoil of farmland in Yanqi Basin, Xinjiang[J]. Agricultural Research in the Arid Areas, 2019,37(2):195-201. ] |
[40] | 张冈, 周志宇, 张彩萍. 利用方式对盐渍化土壤中有机质和盐分的影响[J]. 草业学报, 2007,16(4):15-20. |
[40] | [ Zhang Gang, Zhou Zhiyu, Zhang Caiping. The effect of land use on the levels of salt and organic matter in saline soil[J]. Acta Prataculturae Sinica, 2007,16(4):15-20. ] |
/
〈 | 〉 |