Variation characteristics of canopy nutrients during the rainfall process of Haloxylon ammodendron and Haloxylon persicum in the Gurbantunggut Desert

Expand
  • (1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; 2. Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, Xinjiang, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Bogda Ecological Environment Monitoring Station, Tianchi Lake in Xinjiang Management Committee, Fukang 831500, Xinjiang, China)

Received date: 2019-11-26

  Revised date: 2020-08-30

  Online published: 2020-12-16

Abstract

Nutrients are relatively scarce in arid regions, and adequate nutrient input after rainwater flows through the canopy is of great significance to the growth and development of plants in arid regions. Through the study ofcanopy nutrients during the rainfall process of Haloxylon ammodendron and H.persicum, which were the maindominant species in the southern margin of the Gurbantunggut Desert, the concentration differences of carbon,nitrogen, and phosphorus in stemflow, throughfall, and rainwater were analyzed, and the concentration degree ofions after rainwater flows through the plant canopy was determined. The results showed that the total organic carbon (TOC) and total nitrogen (TN) concentrations of rainwater increased significantly after passing through the canopy of Haloxylon ammodendron and Haloxylon persicum, and the total phosphorus (TP) did not increase significantly. Thechange of ammonium nitrogen ( NH4+ -N) concentration is basically consistent with that of TN, and the difference between nitrate-nitrogen ( NO3- -N) and nitrite-nitrogen ( NO2- -N) concentrations is not completely significant. Among them, the trunk organic nitrogen (TON) has the highest proportion, and its proportion in TN is always greater than 50%. For the average concentration of different nutrient inputs, in addition to TP and NO3- -N, other ions have increased. The concentrations of TP, NO3- -N, and NO2- -N are lower, and they flow in the stems of stemflow,through fall, and rain. The coefficient of variation is larger in.

Cite this article

YUE Yue-meng, LI Chen-hua, XU Zhu, TANG Li-song . Variation characteristics of canopy nutrients during the rainfall process of Haloxylon ammodendron and Haloxylon persicum in the Gurbantunggut Desert[J]. Arid Zone Research, 2020 , 37(5) : 1293 -1300 . DOI: 10.13866/j.azr.2020.05.22

References

[1] 杨新国, 古君龙, 王兴, 等. 荒漠草原中间锦鸡儿(Caragana inter⁃ media)冠层穿透雨的发生与分布特征[J]. 干旱区研究, 2019, 36 (1): 134-141. [Yang Xinguo, Gu Junlong, Wang Xing, et al. Occur⁃ rence and distribution of throughfall under Caragana intermedia canopy in desert steppe[J]. Arid Zone Research, 2019, 36(1): 134- 141. ] [2] 余新晓. 森林生态水文[M]. 北京: 中国林业出版社, 2004. [Yu Xinxiao. Forest Ecological Hydrology[M]. Beijing: China Forestry Publishing House, 2004. ] [3] 闫文德, 田大伦, 陈书军, 等. 4个树种茎流养分特征研究[J]. 林 业科学, 2005, 41(6): 50-56. [Yan Wende, Tian Dalun, Chen Shu⁃ jun, et al. Nutrient characteristics of stem-flow in four tree species [J]. Scientia Silvae Sinicae, 2005, 41(6): 50-56. ] [4] Parker G G. Throughfall and stemflowin the forest nutrient cycle [J]. Advances in Ecological Research, 1983, 13(4): 57-133. [5] Levia D F, Frost E E. A review and evaluation of stemflow litera⁃ ture in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems[J]. Journal of Hydrology(Amsterdam), 2003, 274(1-4): 1-29. [6] 马雪华. 在杉木林和马尾松林中雨水的养分淋溶作用[J]. 生态 学报, 1987, 9(1): 15-20. [Ma Xuehua. Effects of rainfall on the nutrient cycling in man- made forests of Cunninghamia lanceolata and Pinus massoniana[J]. Acta Ecologica Sinica, 1987, 9(1): 15-20. ] [7] André F, Jonard M, Ponette Q. Effects of biological and meteoro⁃ logical factors on stemflow chemistry within a temperate mixed oak- beech stand[J]. Science of the Total Environment, 2008, 393 (1): 72-83. [8] Návar J. Stemflow variation in Mexico’s Northeastern forest com⁃ munities: Its contribution to soil moisture content and aquifer re⁃ charge[J]. Journal of Hydrology, 2011, 408(1-2): 35-42. [9] 黄智军, 刘青青, 侯晓龙, 等. 长汀不同郁闭度马尾松林降雨淋 溶养分输入特征[J]. 森林与环境学报, 2018, 38(2): 129-134. [Huang Zhijun, Liu Qingqing, Hou Xiaolong, et al. Characteristics of rainfall leaching nutrient input in Pinus massoniana forest with different canopy density of Changting[J]. Journal of Forest and En⁃ vironment, 2018, 38(2): 129-134. ] [10] Smart R M , Barko J W . Nitrogen nutrition and salinity tolerance of Distichlis spicata and Spartina alterniflora[J]. Ecology, 1980, 61 (3): 630-638. [11] 张伟, 刘学军, 胡玉昆, 等. 乌鲁木齐市区大气氮素干沉降的输 入性分析[J]. 干旱区研究, 2011, 28(4): 710-716. [Zhang Wei, Liu Xuejun, Hu Yukun, et al. Analysis on input of atmospheric ni⁃ trogen dry deposition in Urumqi[J]. Arid Zone Research, 2011, 28 (4): 710-716. ] [12] 戴岳, 郑新军, 李彦, 等. 古尔班通古特沙漠梭梭和白梭梭树干 茎流特征[J]. 干旱区研究, 2013, 30(5): 867-872. [Dai Yue, Zheng Xinjun, Li Yan, et al. Stemflow of Haloxylon ammodendron and H. persicumin the Gurbantonggut Desert[J]. Arid Zone Re⁃ search, 2013, 30(5): 867-872. ] [13] 李从娟, 雷加强, 徐新文, 等. 树干径流对梭梭肥岛和盐岛效应 的作用机制[J]. 生态学报, 2012, 32(15): 4819-4826. [Li Con⁃ gjuan, Lei Jiaqiang, Xu Xinwen, et al. The effects of stemflow on the formation o“f Fertile Island”and“Salt Island”for Haloxylon am⁃ modendron Bge[J]. Acta Ecologica Sinica, 2012, 32(15): 4819- 4826. ] [14] 钱亦兵, 吴兆宁, 杨海峰, 等. 古尔班通古特沙漠纵向沙垄植被 空间异质性[J]. 中国沙漠, 2011, 31(2): 420-427. [Qian Yibing, Wu Zhaoning, Yang Haifeng, et al. Vegetation spatial heterogene⁃ ity across longitudinal dunesin the Southern Gurbantunggut Desert [J]. Journal of Desert Research, 2011, 31(2): 420-427. ] [15] 王志辉, 张颖, 刘学军, 等. 黄土区降水降尘输入农田土壤中的 氮素评估[J]. 生态学报, 2008, 28(7): 3295-3301. [Wang Zhihui, Zhang Ying, Liu Xuejun, et al. Dry and wet nitrogen deposition in agricultural soils in the Loess area[J]. Acta Ecologica Sinica, 2008, 28(7): 3295-3301. ] [16] 杨林, 王明, 王传华. 神农架地区次生林主要树种林冠雨的氮磷 营养特征[J]. 生态学杂志, 2018, 37(4): 1018-1025. [Yang Lin, Wang Ming, Wang Chuanhua. Nitrogen and phosphorous charac⁃ teristics of canopy rainfall of eight dominant tree speciesin second⁃ ary forests of Shennongjia Mountain[J]. Chinese Journal of Ecolo⁃ gy, 2018, 37(4): 1018-1025. ] [17] 樊后保. 杉木林截留对降水化学的影响[J]. 林业科学, 2000, 36 (4): 2-8. [Fan Houbao. Effects of canopy interception by Chinese fir forests on precipitation chemistry[J]. Scientia Silvae Sinicae, 2000, 36(4): 2-8. ] [18] 张捷, 刘洋, 张健, 等. 马尾松人工林林冠层降雨再分配及其氮 磷特征[J]. 生态学杂志, 2014, 33(6): 1451-1458. [Zhang Jie, Liu Yang, Zhang Jian, et al. Rainfall redistribution by crown layer and variation characteristics of nitrogen and phosphorus in Pinus ma⁃ soniana plantations[J]. Chinese Journal of Ecology, 2014, 33(6): 1451-1458. ] [19] Gong X W, Lü G H, He X M, et al. High air humidity causes atmo⁃ spheric water absorption via assimilating branches in the deeprooted tree Haloxylon ammodendron in an arid desert region of Northwest China[J]. Frontiers in Plant Science, 2019, 10: 1-13. [20] Goldsmith, Gregory R. Changing directions: The atmosphere-plantsoil continuum[J]. New Phytologist, 2013, 199(1): 4-6. [21] Yan X, Zhou M, Dong X, et al. Molecular mechanisms of foliar wa⁃ ter uptake in a desert tree[J]. AoB Plants, 2015, 129: 1-14. [22] 冯宗炜, 陈楚莹, 王开平, 等. 亚热带杉木纯林生态系统中营养 元素的积累、分配和循环的研究[J]. 植物生态学与地植物学丛 刊, 1985, 9(4): 245-256. [Feng Zongwei, Chen Chuying, Wang Kaiping, et al. Studies on the accumulation, distribution and cy⁃ cling of nutrient in the ecosystem of the pure stand of subtropical Cunninghamia lanceolata forests[J]. Chinese Journal of Plant Ecol⁃ ogy, 1985, 9(4): 245-256. ] [23] Lindberg S E, Lovett G M, Richter D D, et al. Atmospheric deposi⁃ tion and canopy interactions of major ions in a forest[J]. Science, 1986, 231(4734): 141-145. [24] Potter C S, Swank R W T. Atmospheric deposition and foliar leach⁃ ing in a regenerating Southern appalachian forest canopy[J]. Jour⁃ nal of Ecology, 1991, 79(1): 97-115. [25] Wang X, Wang T, Jiang J, et al. On the sand surface stability in the Southern part of Gurbantünggüt Desert[J]. Science in China(Se⁃ ries D), 2005, 48(6): 778-785. [26] 李从娟, 马健, 李彦, 等. 梭梭和白梭梭主根周围土壤养分的梯 度分布[J]. 中国沙漠, 2011, 31(5): 1174-1180. [Li Congjuan, Ma Jian, Li Yan, et al. Nutrient gradient distribution in soil around taproots of Haloxylon ammodendron and Haloxylon persicum[J]. Journal of Desert Research, 2011, 31(5): 1174-1180. ] [27] 张卫宾, 刘彤, 李宽亮, 等. 古尔班通古特沙漠梭梭与白梭梭利 用降雨的差异[J]. 生态学杂志, 2011, 30(8): 1612-1619. [Zhang⁃ Weibin, Liu Tong, Li Kuanliang, et al.Difference of rainfall use strategy between Haloxylon ammodendron and Haloxylon persicu⁃ min Gurbantonggut Desert[J]. Chinese Journal of Ecology, 2011, 30(8): 1612-1619. ] [28] 郑利霞, 刘学军, 张福锁. 大气有机氮沉降研究进展[J]. 生态学 报, 2006, 27(9): 3828-3834. [Zheng Lixia, Liu Xuejun, Zhang Fu⁃ suo.Atmospheric deposition of organic nitrogen: A review[J]. Acta Ecologica Sinica, 2006, 27(9): 3828-3834. ] [29] Russell K M, Galloway J N, Macko S A, et al. Sources of nitrogen in wet deposition to the Chesapeake Bay region[J]. Atmospheric Environment, 1998, 32(14-15): 2453-2465. [30] Scudlark J R, Russell K M, Galloway J N, et al. Organic nitrogen in precipitation at the mid-Atlantic U.S. Coast: Methods evaluation and preliminary measurements[J]. Atmospheric Environment, 1998, 32(10): 1719-1728. [31] Peierls B L, Paerl H W. Bioavailability of atmospheric organic ni⁃ trogen deposition to coastal phytoplankton[J]. Limnology and Ocean⁃ ography, 1997, 42(8): 1819-1823. [32] Carlyle-Moses D E. Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community [J]. Journal of Arid Environments, 2004, 58(2): 181-202. [33] Fan H B, Hong W. Estimation of dry deposition and canopy ex⁃ change in Chinese fir plantations[J]. Forest Ecology and Manage⁃ ment, 2001, 147(2-3): 99-107.
Outlines

/