Magnitude of groundwater evapotranspiration in the Badain Jaran Desert based on groundwater dynamics method and empirical model:A case study of the Sumujilin Lake Area

Expand
  • (College of Earth and Environmental Sciences, Center for Glacier and Desert Research, Lanzhou University, Lanzhou 730000, Gansu, China)

Received date: 2019-12-23

  Revised date: 2020-03-26

  Online published: 2020-12-16

Abstract

The Sumujilin Lake Area was taken as a study case to determine the contribution of evapotranspiration to groundwater drainage in the Badain Jaran Desert hinterland. Using high- resolution remote sensing image, digital elevation model (DEM), and field- measured groundwater depth, we extracted the ranges of lake water surface, different types of vegetation coverage areas, and groundwater depth hierarchic areas in the study area. Meanwhile, the evapotranspiration of vegetation coverage area and bare land wererespectively calculated on the basis of the groundwater dynamic method and the groundwater evapotranspiration empirical model. The results showed that the evapotranspiration from the Phragmites australis observation area is larger than that from the Nitraria tangutorum- Achnatherum splendens observation area during the same period. There are differences in the evapotranspiration patterns of the two types of observation areas. The former reaches the peak of the evapotranspiration rate during the middle stage of the growing season, whereas the latter reaches the peak during the early stage. Under the same atmospheric conditions, the total amount of groundwater evapotranspiration with vegetation cover in the Sumujilin Lake Area during the growing season is 16% to 18% more than that without vegetation coverage. Therefore, using only bare land groundwater evapotranspiration formulas or models to calculate the groundwater balance of the lake basin would produce large errors. Finally, the total amount of groundwater evapotranspiration in the Sumujilin Lake Area, including vegetation coverage and bare zone with shallow groundwater depth, accounts for 11.3% to 13.2% of the total groundwater drainage in the lake area, which proves that groundwater evapotranspiration is one of the key items of the water cycle of Badain Jaran Desert lakes and could not be negligible in the water balance studies.

Cite this article

ZHANG Wen-jia, WANG Nai-ang, YU Xin-ran, NIN Zhen-min, ZHAO Li-qiang . Magnitude of groundwater evapotranspiration in the Badain Jaran Desert based on groundwater dynamics method and empirical model:A case study of the Sumujilin Lake Area[J]. Arid Zone Research, 2020 , 37(5) : 1215 -1222 . DOI: 10.13866/j.azr.2020.05.14

References

[1] 李晓媛, 于德永. 蒸散发估算方法及其驱动力研究进展[J]. 干旱 区研究, 2020, 37(1): 26-36. [Li Xiaoyuan, Yu Deyong. Progress on evapotranspiration estimation methods and driving forcesin arid and semiarid regions [J]. Arid Zone Research, 2020, 37(1): 26-36. ] [2] 叶水庭, 施鑫源, 苗晓芳. 用潜水蒸发经验公式计算给水度问题 的分析[J]. 水文地质工程地质, 1982, 4(12): 45-48. [Ye Shuit⁃ ing, Shi Xinyuan, Miao Xiaofang. Analysis of calculating water supply with submerged evaporation empirical formula[J]. Hydroge⁃ ology & Engineering Geology, 1982, 4(12): 45-48. ] [3] 雷志栋, 杨诗秀, 谢森传. 潜水稳定蒸发的分析与经验公式[J]. 水利学报, 1984, 8(7): 60-64. [Lei Zhidong, Yang Shixiu, Xie Sen⁃ chuan. Analysis and empirical formula of stable evaporation in groundwater[J]. Journal of Hydraulic Engineering, 1984, 8(7): 60- 64. ] [4] White W N. A Method of Estimating Ground- Water Supplies Based on Discharge by Plants and Evaporation from Soil: Results of Investigations in Escalante Valley, Utah[M]. Washington: U. S. 1220 5 期张文佳等:基于地下水动态和经验模型的巴丹吉林沙漠潜水蒸发量级——以苏木吉林湖区为例 Government Printing Office, 1932: 1-105. [5] Loheide S P. A method for estimating subdaily evapotranspiration of shallow groundwater using diurnal water table fluctuations[J]. Ecohydrology, 2008, 1(1): 59-66. [6] Gribovszki Z, Kalicz P, Szilágyi J, et al. Riparian zone evapotrans⁃ piration estimation from diurnal groundwater level fluctuations[J]. Journal of Hydrology, 2008, 349(1): 6-17. [7] 李洪波, 侯光才, 尹立河, 等. 基于改进White方法的地下水蒸 散发研究[J]. 地质通报, 2012, 31(6): 989-993. [Li Hongbo, Hou Guangcai, Yin Lihe, et al. Using the improved White method to quantify groundwater evapotranspiration[J]. Geological Bulletin of China, 2012, 31(6): 989-993. ] [8] Yin L H, Zhou Y X, Ge S M, et al. Comparison and modification of methods for estimating evapotranspiration using diurnal groundwa⁃ ter level fluctuations in arid and semiarid regions[J]. Journal of Hy⁃ drology, 2013, 496: 9-16. [9] 贾伍慧, 尹立河, 王晓勇, 等. 利用改进的Loheide方法计算地下 水的蒸散发量[J]. 水文地质工程地质, 2017, 44(2): 48-51. [Jia Wuhui, Yin Lihe, Wang Xiaoyong, et al. Quantifying groundwater evapotranspiration by themodified loheide method[J]. Hydrogeolo⁃ gy & Engineering Geology, 2017, 44(2): 48-51. ] [10] Mazur M L C, Wiley M J, Wilcox D A. Estimating evapotranspira⁃ tion and groundwater flow from water-table fluctuations for a gener⁃ al wetland scenario[J]. Ecohydrology, 2014, 7(2): 378-390. [11] Gribovszki Z. Comparison of specific- yield estimates for calculat⁃ ing evapotranspiration from diurnal groundwater-level fluctuations [J]. Hydrogeology Journal, 2018, 26(3): 869-880. [12] Nachabe M H. Analytical s for transient specific yield and shallow water table drainage[J]. Water Resources Research, 2002, 38(10): 1-7. [13] Loheide S P, Butler J J, Gorelick S M. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctua⁃ tions: A saturated-unsaturated flow assessment[J]. Water Resourc⁃ es Research, 2005, 41(7): W07030. [14] 王平, 张学静, 王田野, 等. 估算干旱区地下水依赖型植物蒸散 发的White 法评述[J]. 地理科学进展, 2018, 37(9): 1159-1170. [Wang Ping, Zhang Xuejing, Wang Tianye, et al. A review of the White method for the estimation of evapotranspiration fromphreato⁃ phytes in arid areas[J]. Progress in Geography, 2018, 37(9): 1159- 1170. ] [15] Yuan G F, Luo Y, Shao M A, et al. Evapotranspiration and its main controlling mechanism over the desert riparian forests in the lower Tarim River Basin[J]. Science China Earth Sciences, 2015, 58(6): 1032-1042. [16] Cheng D H, Li Y, Chen X H, et al. Estimation of groundwater evapotranspiration using diurnal water table fluctuations in the Mu Us Desert, Northern China[J]. Journal of Hydrology, 2013, 490: 106-113. [17] Yue W F, Wang T J, Franz T E, et al. Spatiotemporal patterns of water table fluctuations and evapotranspiration induced by ripari⁃ an vegetation in a semiarid area[J]. Water Resources Research, 2016, 52(3): 1948-1960. [18] 孙海涛, 陈亚鹏, 陈亚宁, 等. 塔里木河下游荒漠河岸林地下水 蒸散发[J]. 干旱区研究, 2020, 37(1): 116-125. [Sun Haitao, Chen Yapeng, Chen Yaning, et al. Groundwater evapotranspiration in desert riparian forest in the lower reaches of the Tarim River[J]. Arid Zone Research, 2020, 37(1): 116-125. ] [19] 王涛. 巴丹吉林沙漠形成演变的若干问题[J]. 中国沙漠, 1990, 10(1): 32-43. [Wang Tao. Formation and evolution of Badain Jaran Desert, China[J]. Journal of Desert Resert, 1990, 10(1): 32-43. ] [20] Chen J S, Li L, Wang J Y, et al. Water resources: Groundwater maintains dune landscape[J]. Nature, 2004, 432(7016): 459-460. [21] 丁宏伟, 王贵玲. 巴丹吉林沙漠湖泊形成的机理分析[J]. 干旱区 研究, 2007, 24(1): 1-7. [Ding Hongwei, Wang Guiling. Study on the formation mechanism of the lakes in the Badain Jaran Desert [J]. Arid Zone Research, 2007, 24(1): 1-7. ] [22] 张竞, 王旭升, 胡晓农, 等. 巴丹吉林沙漠湖泊水分补给机制的 模拟——以苏木吉林湖区为例[J]. 湖泊科学, 2017, 29(2): 467- 479. [Zhang Jing, Wang Xusheng, Hu Xiaonong, et al. Research on the recharge of the lakes in the Badain Jaran Desert: Simula⁃ tion study inthe Sumu Jaran lakes area[J]. Journal of Lake Scienc⁃ es, 2017, 29(2): 467-479. ] [23] 韩鹏飞, 王旭升, 胡晓农, 等. 巴丹吉林沙漠湖泊水面蒸发与气 象要素的动态关系[J]. 干旱区研究, 2018, 35(5): 1012-1020. [Han Pengfei, Wang Xusheng, Hu Xiaonong, et al. Dynamic rela⁃ tionship between lake surface evaporation and meteorological fac⁃ tors in the Badain Jaran Desert [J]. Arid Zone Research, 2018, 35 (5): 1012-1020. ] [24] 朱金峰, 王乃昂, 陈红宝, 等. 基于遥感的巴丹吉林沙漠范围与 面积分析[J]. 地理科学进展, 2010, 29(9): 1087-1094. [Zhu Jin⁃ feng, Wang Nai’ang, Chen Hongbao, et al. Study on the boundary and the area of Badain Jaran Desert based on remote sensing imag⁃ ery[J]. Progress in Geography, 2010, 29(9): 1087-1094. ] [25] 马宁, 王乃昂, 李卓仑, 等. 1960—2009年巴丹吉林沙漠南北缘 气候变化分析[J]. 干旱区研究, 2011, 28(2): 242-250. [Ma Ning, Wang Nai’ang, Li Zhuolun, et al. Analysis on climate change in the northern and southern marginal zones of the Badain Juran Des⁃ ert during the period 1960-2009[J]. Arid Zone Research, 2011, 28 (2): 242-250. ] [26] 王乃昂, 马宁, 陈红宝, 等. 巴丹吉林沙漠腹地降水特征的初步 分析[J]. 水科学进展, 2013, 24(2): 153-160. [Wang Nai’ang, Ma Ning, Chen Hongbao, et al. A preliminary study of precipitation characteristicsin the hinterland of Badain Jaran Desert[J]. Advanc⁃ es in Water Science, 2013, 24(2): 153-160. ] [27] Wang N A, Ning K, Li Z L, et al. Holocene high lake- levels and pan- lake period on Badain Jaran Desert[J]. Science China Earth Sciences, 2016, 59(8): 1633-1641. [28] 马宁, 王乃昂. 巴丹吉林沙漠腹地湖泊水面蒸发模拟的特殊性 [J]. 干旱区研究, 2016, 33(6): 1141-1149. [Ma Ning, Wang Nai’ ang. On the simulation of evaporation from lake surface in the hinterlandof the Badain Jaran Desert[J]. Arid Zone Research, 2016, 33(6): 1141-1149. ] [29] Penman H L, Keen B A. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 193(1032): 120-145. [30] 付秋萍. 旱区潜水蒸发特征与排水系统参数确定方法研究[D]. 西安: 西安理工大学, 2007. [Fu Qiuping. Study on Phreatic Evap⁃ oration Characteristics and the Parmeter Determination Method of Drainage System Arid Zone[D]. Xi􀆳an: Xi􀆳an University of Technol⁃ ogy, 2007. ] [31] 周燕怡, 王旭升. 巴丹吉林沙漠潜水蒸发的数值模拟研究[J]. 水 文地质工程地质, 2019, 46(5): 44-54. [Zhou Yanyi, Wang Xush⁃ eng. Numerical simulation of groundwater evaporation in the Ba⁃ dain Jaran Desert of China[J]. Hydrogeology & Engineering Geolo⁃ gy, 2019, 46(5): 44-54. ] [32] 王旭升, 胡晓农, 金晓媚, 等. 巴丹吉林沙漠地下水与湖泊的相 互作用[J]. 地学前缘, 2014, 21(4): 91-99. [Wang Xusheng, Hu Xiaonong, Jin Xiaomei, et al. Interactions between groundwater and lakes in Badain Jaran Desert[J]. Earth Science Frontiers, 2014, 21(4): 91-99. ] [33] 胡文峰, 王乃昂, 赵力强, 等. 巴丹吉林沙漠典型湖泊湖气界面 水一热交换特征[J]. 地理科学进展, 2015, 34(8): 1061-1071. [Hu Wenfeng, Wang Nai’ang, Zhao Liqiang, et al. Water-heat ex⁃ change over a typical lake in Badain Jaran Desert, China[J]. Prog⁃ ress in Geography, 2015, 34(8): 1061-1071. ]
Outlines

/