Study on CO2, CH4, and N2O emissions from reed wetlands in typical freshwater lake and saltwater lake in Xinjiang

Expand
  • (1. College of Geographic Science and Tourism, Xinjiang Normal Univeristy, Urumqi 830054, Xinjiang, China; 2. Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Laboratory of Lake Environment and Resource in Arid Area, Urumqi 830054, Xinjiang, China; 3. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 4. College of Resources and Environment,University of Chinese Academy of Sciences, Beijing 100190, China)

Received date: 2020-06-16

  Revised date: 2020-07-17

  Online published: 2020-12-16

Abstract

We compare and analyze the monitoring data of Bosten Lake, China’s largest inland freshwater lake, and Ebinur, Xinjiang’s largest saltwater lake, from December 2016 to November 2017, using static chamber gas chromatography, researching the difference of soil greenhouse gas emissions between typical freshwater lake and saltwater lake reed wetlands in Xinjiang. It showed that (1) by analyzing the average daily emissions during the observation period, it is found that the CO2 emission trend of the freshwater lake shows a single peak curve, and the CH4 emission trends at the adjacent time points are not prominent. The N2O of freshwater lake and saltwater lake are between 9 o’clock and 13 o’clock, and the differences in emissions between 17:00 and 21:00 were not obvious. (2) The seasonal changes of soil CO2, CH4, and N2O in the freshwater lake and saltwater lake reed wetlands showed a single peak curve trend. The peak of greenhouse gas emissions was mainly concentrated in summer. The peak of saltwater lake N2O emissions appeared in autumn. There were no significant differences in CO2 and N2O emissions between the freshwater lake and the saltwater lake (P>0.05), The difference of CH4 emissions between the two lakes is significant (P<0.05). (3) Lake wetlands store large amounts of greenhouse gases in winter. The release of CO2, CH4, and N2O from Bosten Lake in the spring melt accounts for 22%, 30%, and 12% of the total cumulative emissions for the year, and Lake Ebinur accounted for 40%, 0.8%, and 47%. (4) The effects of soil temperature, soil moisture content, and soil organic matter on the CO2 emissions of the saltwater lake were weak. pH inhibited N2O emissions from Bosten Lake, and soil salinity had a strong inhibitory effect on CO2 and CH4 emissions from Ebinur. (5) The global warming potential of lake reed wetland soil in arid areas was as follows: freshwater lake > saltwater lake. Both the freshwater lake and the saltwater lake reed wetlands contribute to global warming on the centennial scale.

Cite this article

WANG Shun-ke, LI Yan-hong, LI Fa-dong, WANG Jin-long . Study on CO2, CH4, and N2O emissions from reed wetlands in typical freshwater lake and saltwater lake in Xinjiang[J]. Arid Zone Research, 2020 , 37(5) : 1183 -1193 . DOI: 10.13866/j.azr.2020.05.11

References

[1] Rodhe H. A comparison of the contribution of various gases to the green house effect[J]. Science, 1990, 248(4960): 1217-1219. [2] 胡泓, 王东启, 李杨杰, 等. 崇明东滩芦苇湿地温室气体排放量及其影响因素[J]. 环境科学研究, 2014, 27(1): 43-50. [HuHong, Wang Dongqi, Li Yangjie, et al. Greenhouse gases fluxes at Chongming Dongtan Phragmites australis wetland and the influ⁃encing factors[J]. Research of Environmental Science, 2014, 27(1): 43-50. ] [3] 马蓉. 新疆博斯腾湖北岸不同地表条件下土壤呼吸特征研究[D]. 乌鲁木齐: 新疆大学, 2015. [Ma Rong. Research of Soil Respiration under Different Surface Conditions of the North Shore of Bosten Lake in Xinjiang[D]. Urumqi: Xinjiang University, 2015. ] [4] 杨磊. 巴音布鲁克天鹅湖高寒湿地CO2和CH4排放特征研究[D]. 乌鲁木齐: 新疆农业大学, 2015. [Yang Lei. Research onCO2 and CH4 Fluxe in Bayinbuluke Swan Lake Marsh Meadow [D].Urumqi: Xinjiang Agricultural University, 2015. ] [5] Qin L, Lyu G H, He X M, et al. Winter soil CO2 efflux and its con⁃tribution to annual soil respiration in different ecosystems of Ebinur Lake Area[J]. Eurasian Soil Science, 2015, 48(8): 871-880. [6] 王金龙, 李艳红, 李发东. 博斯腾湖人工和天然芦苇湿地土壤CO2、CH4 和N2O 排放量[J]. 生态学报, 2018, 38(2): 668-677.[Wang Jinlong, Li Yanhong, Li Fadong. Emission fluxes of CO2,CH4, and N2O from artificial and natural reed wetlands in BostenLake[J]. Acta Ecologica Sinica, 2018, 38(2): 668-677. ] [7] 钟巍, 舒强. 南疆博斯腾湖近12.0 kaB.P.以来古气候与古水文状况的变化[J]. 海洋与湖沼, 2001, 32(2): 213-219. [Zhong Wei,Shu Qiang. Palaeo climatic and palaeo hydrologic oscillations since about 12 .0 kaB.P.at Bosten Lake, Southern Xinjiang[J]. Oceanologia Et Limnologia Sinica, 2001, 32(2): 213-219. ] [8] 华润葵, 李玉勤. 博斯腾湖芦苇资源调查中遥感技术的应用[J]. 地理科学, 1983, 3(2): 151-158. [Hua Runkui, Li Yuqin. Ap⁃plication of remote sensing technology in investigation of reed re⁃sources in Bosten Lake[J]. Scientia Geographica Sinica, 1983, 3(2): 151-158. ] [9] 高建芳, 章曙明, 李新贤. 艾比湖流域水资源可利用量分析[J].水文, 2004, 24(5): 32- 36. [Gao Jianfang, Zhang Shuming, LiXinxian. Analysis of water resources availability in the Ebinur basin[J]. Hydrology, 2004, 24(5): 32-36. ] [10] 牛翠云, 王树涛, 郭艳杰, 等. 白洋淀芦苇型水陆交错带湿地CH4 和CO2 的排放特征[J]. 江苏农业科学, 2018, 46(15): 209-213. [Niu Cuiyun, Wang Shutao, Guo Yanjie, et al. Emission characteristics of CH4 and CO2 in the wetland of reed- type interlacedzone in Baiyangdian[J]. Jiangsu Agricultural Sciences, 2018, 46(15): 209-213. ] [11] 王剑昆, 田明中, 王浩. 内蒙古清水湖老牛湾地质公园环境容量研究[J]. 资源与产业, 2014, 16(3): 37-43. [Wang Jiankun, TianMingzhong, Wang Hao. Environmental capacity of Qingshuihes Laoniuwan Geopark,Inner Mongolia[J]. Resources & Industries,2014, 16(3): 37-43. ] [12] Cai Y J, Ding W X, Luo J F. Spatial variation of nitrous oxide emis⁃sion between inteerow soil and interrow plus row in along termmaize cultivated sandy loam soils[J]. Geoderma, 2012, 181-182:2-10. [13] 孔宪旺, 刘英烈, 熊正琴, 等. 湖南地区不同集约化栽培模式下双季稻稻田CH4和N2O的排放规律[J]. 环境科学学报, 2013, 33(9): 2612-2618. [Kun Xianwang, Liu Yinglie, Xiong Zhengqin, etal. [Sun Xianwang, Liu Yinglie, Xiong Zhengqin, et al. CH4 andN2O emissions from double-rice field under different intensified cultivation patterns in Hunan Province[J]. Acta Scientiae Circumstantiae, 2013, 33(9): 2612-2618. ] [14] 张东秋, 石培礼, 张宪洲. 土壤呼吸主要影响因素的研究进展[J]. 地球科学进展, 2005, 20(7): 778-785. [Zhang Dongqiu, ShiPeili, Zhang Xianzhou. Some advance in the main factors control⁃ling soil respiration[J]. Advances in Earth Science, 2005, 20(7):778-785. ] [15] 谢军飞, 李玉娥. 农田土壤温室气体排放机理与影响因素研究进展[J]. 中国农业气象, 2002, 23(4): 47-52. [Xie Junfei, Li Yue. A review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils[J]. Chinese Journal of Agrometeorology, 2002, 23(4): 47-52. ] [16] 满中龙. 新疆艾比湖湿地土壤CO2释放规律研究[D]. 乌鲁木齐:新疆师范大学, 2011. [Man Zhonglong. The Study of Soil CO2 Re⁃lease Illustration on Aibi Lake Wetland[D]. Urumqi: Xinjiang Nor⁃mal University, 2011. ] [17] 杨晓慧, 蒋卫杰, 魏珉, 等. 植物对盐胁迫的反应及其抗盐机研究进展[J]. 山东农业大学学报(自然科学版), 2006, 37(2): 302-305. [Yang Xiaohui, Jiang Weijie, Wei Min, et al. Review omplant response and resistance mechanism to salt stress[J]. Journal of Shandong Agricultural University (Natural Science Edition),2006, 37(2): 302-305. ] [18] 伍星, 沈珍瑶. 冻融作用对土壤温室气体产生与排放的影响[J].生态学杂志, 2010, 29(7): 1432-1439. [Wu Xing, Shen Zhenyao. Effects of freezing- thawing cycle on greenhouse gases productionand emission from soil[J]. Chinese Journal of Ecology, 2010, 29(7): 1432-1439. ] [19] 李楠, 康铁鑫, 安睿, 等. 湿地甲烷排放研究概述[J]. 防护林科技, 2014(9): 86-88. [Li Nan, Kang Tiexin, An Rui, et al. Overview of research on wetland methane emissions[J]. Protection Forest Science and Technology, 2014(9): 86-88. ] [20] 黄国宏, 肖笃宁, 李玉祥, 等. 芦苇湿地温室气体甲烷(CH4)排放研究[J]. 生态学报, 2001, 20(9): 1494-1497. [Huang Guohong, Xiao Duning, Li Yuxiang, et al. CH4 emissions from the reed wet⁃land[J]. Acta Ecologica Sinica, 2001, 20(9): 1494-1497. ] [21] 仝川, 曾从盛, 王维奇, 等. 闽江河口芦苇潮汐湿地甲烷通量及主要影响因子[J]. 环境科学学报, 2009, 29(1): 207-216. [TongChuan, Zeng Congsheng, Wang Weiqi, et al. Main factors influenc⁃ing CH4 flux from a Phragmites australis wetland in the Min River estuary[J]. Acta Scientiae Circumstantiae, 2009, 29(1): 207-216. ] [22] 王维奇, 曾从盛, 仝川. 芦苇湿地甲烷排放机理及排放量研究进展[J]. 农业系统科学与综合研究, 2008, 24(1): 20-25. [WangWeiqi, Zeng Congsheng, Tong Chuan. Reviews on the mechanismof methane emission and methane flux in reed Marsh[J]. SystemSciences and Comprehensive Studies In Agriculture, 2008, 24(1):20-25. ] [23] 焦亮, 关雪, 刘雪蕊, 等. 内陆河湿地芦苇叶功能性状特征及其对土壤环境因子的响应[J].干旱区研究, 2020, 37(1): 202-211.[Jiao Liang, Guan Xue, Liu Xuerui et al. Functional traits of Phragmites australis leaves and response to soil environmental factors in inland river wetland[J]. Arid Zone Research, 2020, 37(1): 202-211. ] [24] 宋长春, 王毅勇, 王跃思, 等. 季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J]. 环境科学, 2005, 26(4): 7-12. [Song Changc⁃hun, Wang Yiyong, Wang Yuesi, et al. Dynamics of CO2, CH4 andN2O emission fluxes from mires during freezing and thawing season[J]. Environmental Science, 2005, 26(4): 7-12. ] [25] 张秀君. 土壤N2O产生的微生物过程[J]. 沈阳教育学院学报,2005, 7(1): 129-131. [Zhang Xiujun. Microbial processes of ni⁃trous oxide production from soils[J]. Journal of Shenyang College of Education, 2005, 7(1): 129-131. ] [26] Wolf I, Rrssow R. Different pathways of formation of N2O, N2 and NO in black erath soil boil[J]. Soil Biology & Biochemistry, 2000,32(2): 229-239. [27] 崔洪磊. 典型滨海湿地植被类型及收割方式对沉积物CO2和N2O 释放的影响[D]. 南京: 南京林业大学, 2015. [Cui Honglei.Effects of Vegetation Types and Harvesting Methods on Emissions of CO2 and N2O in Sediments in a Typical Coastal Wetland[D].Nanjing: Nanjing Forestry University, 2015. ] [28] Rudaz A O, Walti E, Kyburz G, et al. Temporal variation in N2Oand N2 fluxes from a permanent pasture in Switzerland in relationto management, soil water content and soil temperature[J]. Agriculture Ecosystem & Environment, 1999, 73(1): 83-91. [29] 李晶, 王明星, 王跃思, 等. 农田生态系统温室气体排放研究进展[J]. 大气科学, 2003, 27(4): 740-749. [Li Jin, Wang Mingxing, Wang Yuesi, et al. Advance of researches on greenhouse gases emission from Chinese agricultural ecosystem.[J]. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 740-749. ] [30] Teepe R, Brumme R, Beese F. Nitrous oxide emissions from soil during freezing and thawing periods[J]. Soil Biology & Biochemistry, 2001, 33(9): 1269-1275. [31] Ludwig B, Wolf I, Teepe R. Contribution of nitrification and denitrification to the emission of N2O in a freeze-thaw event in an agricultural soil[J]. Journal of Plant Nutrition and Soil Science, 2004, 167(6): 678-684.
Outlines

/