Study of evapotranspiration estimation and drought characteristics of watershed in low coteau area of Hexi inland river

Expand
  • (1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences Key laboratory of Ecohydrology of Inland River Basin, Chinese Academy of Sciences, Alxa Desert Eco-和ydrological Experimental Research Station, Lanzhou 730000, Gansu, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Grassland workstation of Alxa Right Banner, Alxa 750306, Inner Mongolia, China)

Online published: 2020-12-16

Abstract

In order to reveal the evapotranspiration and drought characteristics of typical small watershed in low coteau area of Hexi inland river in the arid regions of northwest China, the Xitugou watershed in Dunhuang is used as an example to calculate the potential evapotranspiration of eight observation sites by Penman-Monteith formula based on the conventional meteorological data. On this basis, the actual evapotranspiration of each observation station was calculated by using the method of dual crop coefficient, which was based on NDVI, and then the standardized precipitation evapotranspiration index SPEI of the watershed was calculated. The results show that the annual potential evapotranspiration and actual evapotranspiration are 978 mm and 258 mm, respectively. From the upper reaches to the lower reaches, with the decrease of altitude, the evapotranspiration shows a different degree of increase; the duration of drought in the lower reaches of the basin is long, and the whole growth season will have different degrees of drought, autumn is the main season of drought; the precipitation in the upper reaches of the watershed is greater than the actual evapotranspiration, the actual evapotranspiration of middle and lower reaches is greater than precipitation; the Kc value of the crop coefficient calculated by the NDVI has good applicability in the estimation of actual evapotranspiration, and the drought index SPEI is more advantageous than SPI and PDSI in the drought assessment in the arid inland river basin of northwest in China. This study calculated the potential and actual evapotranspiration of the Xitugou watershed, evaluated the monthly and seasonal drought characteristics of the watershed, and provided guidance for the production and living water consumption of the watershed, especially in the middle and lower reaches. This research obtained the general disciplines to no data river in the low coteau area of the whole Hexi inland river.

Cite this article

CHENG Wen-ju, XI Hai-yang, SI Jian-hua, LI Ai-lin . Study of evapotranspiration estimation and drought characteristics of watershed in low coteau area of Hexi inland river[J]. Arid Zone Research, 2020 , 37(5) : 1105 -1115 . DOI: 10.13866/j.azr.2020.05.02

References

[1] 王燕鑫, 李瑞平, 李夏子. 河套灌区不同土地类型生长季蒸散发量估算及其变化特征[J]. 干旱区研究, 2020, 37(2): 364-373.[Wang Yanxin, Li Ruiping, Li Xiazi. Estimation and variability of evapotranspiration for different land types during the growing season in the Hetao Irrigation District[J]. Arid Zone Research, 2020,37(2): 364-373. ] [2] Gu L, Hu Z, Yao J, et al. Actual and reference evapotranspiration in a cornfield in the Zhangye Oasis, Northwestern China [J]. Water, 2017, 9(7): 1-16. [3] Kool D, Agamn N, Lazarovitch N, et al. A review of approaches for evapotranspiration partitioning [J]. Agricultural and Forest Meteorology, 2014, 184: 56-70. [4] Allen R G, Periera, Raes L S, et al. Crop evapotranspiration:Guidelines for computing crop water requirements [J]. FAO Irrigation and Drainage Paper 56, 1998. [5] Han S, Zhang B. Advances of evapotranspiration research based on the Penman approach and complementary principle [J]. Journal of Hydraulic Engineering, 2018, 49(9): 1158-1168. [6] Hargreaves G H, Samani Z A. Reference crop evapotranspiration from temperature [J]. Applied Engineering in Agriculture, 1985, 1 (2): 96-99. [7] Priestley C B, Taylor R J. On the assessment of surface heatflux and evaporation using large-scale parameters [J]. Monthly Weather Review, 1972, 100(2): 81-92. [8] Blaney H F. Determining Water Requirements in Irrigated Areas from Climatological and Irrigation Data [M]. United States: Soil Conservation Service, 1950. [9] Rohwer C. Evaporation from Free Water Surfaces [M]. US Department of Agriculture, Washington, D. C. in cooperation with Colorado Agricultural Experiment Station, 1931. [10] 赵丽雯, 吉喜斌. 基于FAO-56双作物系数法估算农田作物蒸腾和土壤蒸发研究——以西北干旱区黑河流域中游绿洲农田为例[J]. 中国农业科学, 2010, 43(19): 4016-4026. [Zhao Liwen, Ji Xibin. Quantification of transpiration and evaporation over agricultural field using the FAO-56 dual crop coefficient approach: A case study of the maize field in an oasis in the middlestream of the Heihe River Basin in Northwest China[J]. Scientia Agricultura Si⁃nica, 2010, 43(19): 4016-4026. ] [11] 李念, 孙维君, 秦翔, 等. 祁连山老虎沟地区高寒草甸蒸散发估算[J]. 干旱区资源与环境, 2016, 30(6): 173-178. [Li Nian, Sun Weijun, Qin Xiang, et al. Estimation of evapotranspiration in an alpine meadow in zone of Laohugou in Qilian Mountains[J]. Journal of Arid Land Resources and Environment, 2016, 30(6): 173-178. ] [12] 孙丽, 宋长春. 三江平原典型沼泽湿地蒸散发估测[J]. 应用生态 学报, 2008, 19(9): 1925-1930. [Sun Li, Song Changchun. Estimation of evapotranspiration from atypical marshin Sanjiang Plain[J].Chinese Journal of Applied Ecology, 2008, 19(9): 1925-1930. ] [13] 刘钰, 彭致功. 区域蒸散发监测与估算方法研究综述[J]. 中国水利水电科学研究院学报, 2009, 7(2): 256-264. [Liu Yu, Peng Zhigong. A review of monitoring and estimating methods for regional evapotranspiration[J]. Journal of China Institute of Water Resources and Hydropower Research, 2009, 7(2): 256-264. ] [14] Jin X, Guo R, Xia W. Distribution of actual evapotranspiration over Qaidam Basin, an arid area in China [J]. Remote Sensing, 2013, 5(12): 6976-6996. [15] 任庆福, 杨志勇, 李传哲, 等. 变化环境下作物蒸散研究进展[J].地球科学进展, 2013, 28(11): 1227-1238. [Ren Qingfu, Yang Zhiyong, Li Chuanzhe, et al. Advances in the study of the crop evapo⁃transpiration in changing environment[J]. Advances in Earth Science, 2013, 28(11): 1227-1238. ] [16] Guo X, Cheng G. Advances in the application of remote sensing to evapotranspiration research [J]. Advance in Earth Sciences, 2004, 19(1): 107-114. [17] 张杨, 邱国玉, 鄢春华, 等. 近50年来海拔高度对参考蒸散发变化趋势的影响研究—— 以四川省为例[J]. 生态环境学报,2018, 27(12): 2208-2216. [Zhang Yang, Qiu Guoyu, Yan Chunhua, et al. Studies on the influence of altitudes on the trend of reference evapotranspiration in recent 50 years: A case study of Sichuan province[J]. Ecology and Environmental Sciences, 2018, 27(12): 2208-2216. ] [18] 邱美娟, 刘布春, 刘园, 等. 吉林省参考作物蒸散量的时空变化特征及影响因素[J]. 干旱气象, 2019, 37(1): 119-126. [Qiu Meijuan, Liu Buchun, Liu Yuan, et al. Temporal-spatial variation characteristics of reference crop evapotranspiration and its influence factors in Jilin Province[J]. Journal of Arid Meteorology, 2019, 37(1) : 119-126. ] [19] 李元菲, 张兰霞, 曹永强, 等. 河北省潜在蒸散量时空变化特征及气候影响因素分析[J]. 南水北调与水利科技, 2019, 17(3):67-78. [Li Yuanfei, Zhang Lanxia, Cao Yongqiang, et al. Spatiotemporal variation characteristics of potential evapotranspiration and climate influencing factors in Hebei province[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(3): 67-78. ] [20] Liu X, Zheng H, Zhang M, et al. Identification of dominant climate factor for pan evaporation trend in the Tibetan Plateau [J]. Journalof Geographical Sciences, 2011, 21(4): 594-608. [21] 孙小龙, 武荣盛, 李平, 等. 内蒙古不同类型草原区Hargreaves计算参考作物蒸散量的适用性分析[J]. 草业学报, 2016, 25(5): 13-20. [Sun Xiaolong, Wu Rongsheng, Li Ping, et al. An evaluation of the Hargreaves method for estimating reference evapotranspiration in different grassland types in Inner Mongolia, China[J]. Acta Prataculturae Sinica, 2016, 25(5): 13-20. ] [22] 赵玲玲, 王中根, 夏军, 等. Priestley-Taylor公式的改进及其在互补蒸散模型中的应用[J]. 地理科学进展, 2011, 30(7): 805-810. [Zhao Linlin, Wang Zhonggen, Xia Jun, et al. Improved Priestley Taylor method and its application in complementary relationship evapotranspiration model[J]. Progress in Geography, 2011, 30(7): 805-810. ] [23] 李天生, 夏军, 匡洋, 等. 不同潜在蒸散发估算方法在汉江流域中上游地区的适用性研究[J]. 南水北调与水利科技, 2017, 15 (6): 1-10. [Li Tiansheng, Xia Jun, Kuang Yang, et al. The applicability of various potential evapotranspiration estimation methods in the middle and upper reaches of Hanjing River Basin[J]. South to North Water Transfers and Water Science & Technology, 2017, 15(6): 1-10. ] [24] Abid N, Bargaoui Z, Mannaerts C M. Remote-sensing estimation of the water stress coefficient and comparison with drought evidence [J]. International Journal of Remote Sensing, 2018, 39(14): 4616-4639. [25] Rocha J, Perdigao A, Melo R, et al. Managing water in agriculturethrough remote sensing applications [C]//Proceedings of 30th EAR⁃SeL Symposium on Remote Sensing for Science, Education, andNatural and Cultural Heritage, Paris, France, 2010, 31: 223-230. [26] 陈学林, 牛最荣, 黄维东, 等. 敦煌西土沟沙漠洪水资源开发利用模式及成效分析[J]. 水文, 2017, 37(2): 73-77. [Chen Xuelin,Niu Zuirong, Huang Weidong, et al. Mode and effect of flood re⁃sources utilization in Xitugou Watershed of Dunhuang[J]. Journalof China Hydrology, 2017, 37(2): 73-77. ] [27] 李晓媛, 于德永. 蒸散发估算方法及其驱动力研究进展[J]. 干旱区研究, 2020, 37(1): 26-36. [Li Xiaoyuan, Yu Deyong. Progresson evapotranspiration estimation methods and driving forces in aridand semiarid regions[J]. Arid Zone Research, 2020, 37(1): 26-36. ] [28] Wright J L. New Evapotranspiration crop coefficients [J]. Journalof the Irrigation & Drainage Division-ASCE, 1982, 108: 57-74. [29] 张乐园, 王弋, 陈亚宁. 基于SPEI指数的中亚地区干旱时空分布特征[J]. 干旱区研究, 2020, 37(2): 331-340. [Zhang Leyuan,Wang Yi, Chen Yaning. Spatial and temporal distribution charac⁃teristics of drought in Central Asia based on SPEI index[J]. AridZone Research, 2020, 37(2): 331-340. ] [30] 尹文杰, 张梦琳, 胡立堂. 柴达木盆地干旱时空变化特征[J]. 干旱区研究, 2018, 35(2): 387-394. [Yin Wenjie, Zhang Menglin,Hu Litang. Spatiotemporal variation of drought in the Qaidam Ba⁃sin[J]. Arid Zone Research, 2018, 35(2): 387-394. ] [31] 田静, 苏红波, 陈少辉, 等. 近20年来中国内陆地表蒸散的时空变化[J]. 资源科学, 2012, 34(7): 1277-1286. [Tian Jing, Su Hong⁃bo, Chen Shaohui, et al. Spatial-temporal variations of evapotrans⁃piration in China mainland in recent 20 years[J]. Resources Sci⁃ence, 2012, 34(7): 1277-1286. ] [32] 王翠. 节水措施对玛纳斯河流域蒸散发变化相关分析[J]. 陕西水利, 2019(7): 104-109. [Wang Cui. Correlation analysis of evapotranspirationchanges in Manas River Basin based on water-sav⁃ing measures[J]. Shaanxi Water Resources, 2019(7): 104-109. ] [33] 李修仓. 中国典型流域实际蒸散发的时空变异研究[D]. 南京:南京信息工程大学, 2013. [Li Xiucang. Spatio-Temporal Varia⁃tion of Actual Evapotranspiration in the Pearl, Haihe and TarimRiver Basins of China[D]. Nanjing: Nanjing University of Informa⁃tion Science & Technology, 2013. ] [34] 罗那那, 巴特尔·巴克, 吴燕锋. 石河子地区参考作物蒸散量变化特征及气候因子的定量分析[J]. 水土保持研究, 2016, 23(5):251-255. [Luo Nana, Bake Bateer, Wu Yanfeng. Correlation anal⁃ysis of potential evapotranspiration and key climatic factors in Shi⁃hezi city[J]. Research of Soil and Water Conservation, 2016, 23(5):251-255. ] [35] 徐俊增, 彭世彰, 张瑞美, 等. 参考作物蒸发蒸腾量随纬度与海拔的变化规律研究[C]//农业工程科技创新与建设现代农业——2005年中国农业工程学会学术年会论文集第二分册. 北京: 中国农业工程学会, 2005: 134-137. [Xu Junzeng, Peng Shi⁃zhang, Zhang Ruimei, et al. Reference evapotranspiration variedwith latitude and altitude[C]//Chinese Society of Agricultural Engi⁃neering. Agricultural Engineering Technology Innovation and Con⁃struction of Modern Agriculture: Second Volume of Proceedings ofthe 2005 Annual. Beijing: Conference of the Chinese Society ofAgricultural Engineering, 2005: 134-137. ] [36] 杨庆, 李明星, 郑子彦, 等. 7种气象干旱指数的中国区域适应性[J]. 中国科学: 地球科学, 2017, 47(3): 337-353. [Yang Qing,Li Mingxing, Zheng Ziyan, et al. Regional adaptability of 7 meteo⁃rological drought indexes in China[J]. Scientia Sinica Terrae, 2017,47(3): 337-353. ] [37] 孙艺杰, 刘宪锋, 任志远, 等. 1960—2016年黄土高原多尺度干旱特征及影响因素[J]. 地理研究, 2019, 38(7): 1820-1832. [SunYijie, Liu Xianfeng, Ren Zhiyuan, et al. Spatiotemporal variationsof multi-scale drought and its influencing factors across the LoessPlateau from 1960 to 2016[J]. Geographical Research, 2019, 38(7): 1820-1832. ] [38] Jiang R, Xie J, He H, et al. Use of four drought indices for evaluat⁃ing drought characteristics under climate change in Shaanxi, Chi⁃na: 1951-2012 [J]. Natural Hazards, 2014, 75(3): 2885-2903. [39] 郭旭新, 赵英, 高志永, 等. 基于SPEI的陕北黄土丘陵区干旱特征及影响因素分析[J]. 西北林学院学报, 2019, 34(1): 69-76.[Guo Xuxin, Zhao Ying, Gao Zhiyong, et al. SPEI based droughtcharacters and factors in Loess Hilly regions of Northern Shaanxi[J]. Journal of Northwest Forestry University, 2019, 34(1): 69-76. ] [40] Li X, Sha J, Wang Z L. Comparison of drought indices in the analy⁃sis of spatial and temporal changes of climatic drought events in abasin [J]. Environmental Science Pollution Research, 2019, 26(11): 10695-10707.1114
Outlines

/