Significance of Photoinhibition Response Mechanism of Sabina vulgaris Ant. in the Mu Us Sandland
Received date: 2017-07-21
Revised date: 2017-10-15
Online published: 2018-07-19
Photoinhibition is common in plants which grow under natural conditions. For the duration of species, plants have developed a variety of photoinhibition defense mechanisms during their long-term adaptation and evolution, such as the exercise to avoid light by leaves and chloroplasts, photorespiration, active oxygen scavenging system, conversion of light harvesting pigment, protection by phenolic compounds (anthocyanin, for example), increasing non-photochemical dissipation, depending on the xanthophyll cycle thermal dissipation, and accelerating the turnover of D1 protein. Sabina vulgaris Ant. is the only natural evergreen coniferous shrub in the Mu Us Sandland, it has a strong vitality, a wide range of adaptability, good ecological function and high medical value. The photoinhibition defense mechanisms, such as the heat dissipation mechanism, play an important role during the natural regeneration of S. vulgaris in the desert with strong light environment. In this paper, the photoinhibition of plants and the main photoinhibition defense mechanisms in plants under strong light were reviewed. Light energy is the power source and the basic driving force of photosynthesis, energy shortage restricts photosynthesis, and photoinhibition of photosynthesis caused by light energy exceeds the photosynthesis need.Under strong light stress, photosynthetic pigment antenna absorbing the excessive solar light causes photoinhibition, and then affects the photosynthetic metabolism. Although the light is the direct reason of plant photoinhibition,drought and low or high temperature stress caused by saline and seasonal change lead indirectly to plant photoinhibition. There are two situations for photoinhibition: one is that plant can recover after suffering from photoinhibition, strong light provides more photochemical effect than the leaf photosynthesis, and photosynthesis process overload could cause lower photonutilization and lower photosynthetic quantum yield, this situation occurs often in the sun plants, which depends on the energy dissipation mechanism occurring mainly in photosystem II (PSII) reversible inactivation and relating to the light harvesting complex LHCII (Light-harvesting complex II) reversible detachment. The other is that plant cannot recover after suffering from photoinhibition called photodamage, extremely high radiation damages the photosynthetic pigment and thylakoid structure, this case occurs often in ombrophytes, which causes a photosynthetic organ damage dominated by the PSII’s irreversible damage. The present research and prospect of the photoinhibition defense mechanisms of S. vulgaris were briefly summarized. In recent years, although there are many research reports about S. vulgaris, the research on photoinhibition defense mechanism of S. vulgaris is less. In general, the research about photoinhibition defense mechanisms of Sabina vulgaris still remains at the preliminary exploration stage, and how S. vulgaris defenses the photoinhibition by photosynthetic physiological and molecular mechanisms is not clear.
ZHANG Jin-ling, CHEN Hai-peng, CHEN Da, LI Yu-ling . Significance of Photoinhibition Response Mechanism of Sabina vulgaris Ant. in the Mu Us Sandland[J]. Arid Zone Research, 2018 , 35(4) : 882 -890 . DOI: 10.13866/j.azr.2018.04.16
[1] 王林和, 党宏忠, 张国盛,等. 中国天然臭柏群落的分布与生物量特征[J]. 内蒙古农业大学学报(自然科学版), 2014,35(1):37-45. [Wang Linhe, Dang hongzhong, Zhang Guosheng, et al. Distribution and biomass of natural Juniperus sabina community in China[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2014,35(1):37-45. ]
[2] 张金玲, 程达, 李玉灵,等. 光和水分胁迫对臭柏实生幼苗光化学效率及色素组成的影响[J]. 植物学报, 2017,52(3):278–289. [Zhang Jinling, Cheng Da, Li Yuling, et al. Effect of light and water stress on photochemical efficiency and pigment composition of Sabina vulgaris seedlings[J]. Chinese Bulletin of Botany, 2017,52(3):278–289. ]
[3] 李晨阳, 高慧, 陈燕,等. HPLC测定不同产地新疆圆柏中的槲皮苷[J]. 华西药学杂志, 2015, 30(6): 720-721. [Li Chenyang, Gao Hui, Chen Yan, et al. Determination of quercitrin in Juniperus sabina from the different habitats by HPLC[J]. West China Journal of Pharmaceutical Sciences, 2015, 30(6): 720-721.]
[4] Zhang H, Shi X, Wang L, et al. Antibacterial effect of waste liquor of essence oil extraction from Sabina vulgaris ant in foods[J]. Agricultural Science & Technology, 2016,17(2): 414–416.
[5] 赵媛媛, 丁国栋, 高广磊,等. 毛乌素沙区沙漠化土地防治区划[J]. 中国沙漠, 2017, 37(4): 635-643. [Zhao Yuanyuan, Ding Guodong, Gao Guanglei, et al. Regionalization for aeolian desertification control in the Mu Us sandy land region, China[J]. Journal of Desert Research, 2017, 37(4): 635-643. ]
[6] 红雨. 毛乌素沙地臭柏群落不同演替阶段生理生态学特性的研究[D]. 呼和浩特:内蒙古农业大学, 2006. [Hong Yu. Study on the Ecophysiology of Sabina vulguris Eommunity at the Differernt Successional Stages in Mu Us Sandland[D]. Huhhot: Inner Mongolia Agricultural University, 2006. ]
[7] 赵娜, 古松, 刘龙会,等. 沙地柏(Sabina vulgaris Antoine)的研究进展[J]. 内蒙古农业大学学报(自然科学版), 2010, 31(1):311-318. [Zhao Na, Gu Song, Liu Longhui, et al. Advances in Sabina vulgaris Antoine[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2010, 31(1):311-318. ]
[8] 刘冠志, 李青丰, 贺威,等. 毛乌素沙地3种主要植物群落的阻沙效益[J]. 水土保持通报, 2016, 36(2): 234-238. [Liu Guanzhi, Li Qingfeng, He Wei, et al. Efficiency of sand resistance of three main plant communites Mu Us Sandlan[J]. Bulletin of Soil and Water Conservation, 2016, 36(2): 234-238. ]
[9] 呼格吉勒图. 毛乌素沙地湿地植被特征与生态功能[D]. 呼和浩特:内蒙古大学, 2012. [Hu Gejiletu. Characteristics and Ecological Function of Vegetation of Wetland in Mu Us Sandy Land[D]. Huhhot: Inner Mongolia University, 2012.]
[10] 于洋. 高寒沙地不同林龄乌柳人工防护林固碳功能[D]. 北京:中国林业科学研究院, 2013. [Yu Yang. Carbon Sequestration of the Artificial Shelterbelt Salix cheilophila Plantation with Different Stand Age in High-cold Sandy Land[D]. Beijing: Chinese Academy of Forestry, 2012. ]
[11] 杨雪梅, 杨太保, 刘海猛, 等. 气候变暖背景下近30a北半球植被变化研究综述[J]. 干旱区研究, 2016, 33(2):379-391. [Yang Xuemei, Yang Taibao, Liu Haimeng, et al. Vegetation variation in the north hemisphere under climate warming in the last 30 years[J]. Arid Zone Research,2016, 33(2):379-391.]
[12] 王睿, 周立华, 陈勇,等. 库布齐沙漠机械防沙措施的防护效益[J]. 干旱区研究, 2017,34(2):330-336. [Wang Rui, Zhou Lihua, Chen Yong, et al.Wind-blown sand control effect of sand barriers used in the Hobq Desert[J]. Arid Zone Research,2017,34(2):330-336. ]
[13] 张国盛, 王哲, 王林和, 等. 毛乌素沙地天然臭柏居群有性更新幼苗动态研究[J]. 林业科学, 2006, 42(5): 62-67. [Zhang Guosheng, Wang Zhe, Wang Linhe, et al. Regenerative seedlings dynamics of natural Sabina vulgaris community in Mu Us Sandland[J]. Scientia Silvae Sinicae , 2006, 42(5): 62-67. ]
[14] 张国盛. 毛乌素沙地臭柏生态生理特性及其群落稳定性[D]. 北京:北京林业大学, 2004. [Zhang Guosheng. The Eco-physiological Characteristics and Community Stability of Sabina vulgaris in Mu Us Sandland[D]. Beijing: Beijing Forestry University, 2004. ]
[15] 王林和. 臭柏生理生态学特性及种群恢复与重建[M]. 北京:科学出版社, 2011, 13-20. [Wang Linhe. The Physiological and Ecological Characteristics and Community Restoration and Reconstruction of Sabina vulgaris[M]. Beijing: Science Press, 2011,13-20. ]
[16] 冯玉静. 毛乌素沙地东南缘沉积物光释光测年与环境变迁研究[D]. 兰州:兰州大学, 2015. [Feng Yujing. Luminescence Dating of Sediments from SE Margin of Mu Us Sandy Land and Implications for Environment Change[D]. Lanzhou: Lanzhou University, 2015.]
[17] 徐丹丹, 尹立河, 侯光才,等. 毛乌素沙地旱柳和小叶杨树干液流密度及其与气象因子的关系[J]. 干旱区研究, 2017, 34(2):375-382. [Xu Dandan, Yin Lihe, Hou Guangcai, et al.Relationships between sap flow densities in tree trunks of Salix matsudana and Populus simonii and meteorological factors in the Mu Us Sandland[J], Arid Zone Research, 2017, 34(2):375-382. ]
[18] 秦艳. 毛乌素沙地臭柏、油蒿细根的生产与周转[D]. 呼和浩特:内蒙古农业大学, 2008. [Qin Yan. Fine Root Rroduction and Rurnover of Sabina vulgaris and Artemisia ordosica in Mu Us Sandland[D]. Huhhot: Inner Mongolia Agricultural University, 2008. ]
[19] 黄秋娴, 赵顺, 刘春梅,等. 遮荫处理对铁尾矿基质臭柏实生苗快速叶绿素荧光特性的影响[J]. 林业科学, 2015, 51(6):17-26. [Huang Qiuxian, Zhao Shun, Liu Chunmei, et al. Effects of shading treatments on chlorophyll fluorescence characteristics of Sabina vulgaris seedlings grown in iron tailings media[J]. Scientia Silvae Sinicae , 2015, 51(6):17-26. ]
[20] 赵秀莲. 不同年龄沙地柏抗旱生理特性的差异研究[D]. 北京:中国林业科学研究院, 2007. [Zhao Xiulian. Age-based Variation of Drought-resistance for Juniperus sabina[D]. Beijing: Chinese Academy of Forestry, 2007. ]
[21] 郭秀艳. 臭柏、油松精油的提取与抑菌活性[D]. 呼和浩特:内蒙古农业大学, 2009. [Guo Xiuyan. The extraction and antibacterial affect of Sabina ulgaris Ant. and Pinus tabulaeformis Carr.[D]. Huhhot: Inner Mongolia Agricultural University, 2009. ]
[22] 李玉灵, 朱帆, 王俊刚,等. 水分胁迫下臭柏(Sabina vulgaris Ant.)光合特性和色素组成的季节变化[J]. 生态学报, 2009, 29(8):4346-4352. [Li Yuling,Zhu Fan, Wang Jungang, et al. Seasonal changes of photosynthetic characteristics and pigment composition of Sabina vulgaris Ant. under water stress[J].Acta Ecologica sinica,2009, 29(8):4346-4352. ]
[23] 刘建锋, 赵秀莲, 江泽平. 不同年龄沙地柏生理生态特性差异研究[J]. 西北林学院学报, 2011, 26(3): 17-20. [Liu Jianfeng, Zhao Xiulian, Jiang Zeping. Comparison on several physiological characteristics in Sabina vulgaris seedlings of different ages[J]. Journal of Northwest Forestry University,2011, 26(3): 17-20. ]
[24] 赵顺, 黄秋娴, 李玉灵,等. 遮荫处理对臭柏幼苗光合特性的影响[J]. 生态学报, 2014, 34(8): 1994-2002. [Zhao Shun, Huang Qiuxian, Li Yuling, et al. Effects of shading treatments on photosynthetic characteristics of Juniperus sabina Ant. seedlings[J]. Acta Ecologica sinica, 2014, 34(8): 1994-2002.]
[25] Ishii Y, Sakamoto K, Yamanaka N, et al. Light acclimation of needle pigment composition in Sabina vulgaris seedlings under nurse plant canopy[J]. Journal of Arid Environments, 2006, 67 (3): 403-415.
[26] 许大全. 光合作用学[M]. 北京:科学出版社, 2013, 187-200. [Xu Daquan.Photosynthology [M]. Beijing: Science Press, 2013, 187-200. ]
[27] 张有福, 陈春艳, 陈拓,等. 2种圆柏属植物叶绿素荧光对季节变化的响应特征[J]. 植物研究, 2010, 30(3): 289-293. [Zhang Youfu, Chen Chunyan, Chen Tuo, et al. Chlorophy II fluorescence characteristics in response to seasonal variations in two Sabina trees[J]. Bulletin of Botanical Research, 2010,30(3): 289-293. ]
[28] 许大全. 植物光胁迫研究中的几个问题[J]. 植物生理学通讯, 2003, 39(5), 493-495. [Xu Daquan. Several problems in the research of plant light stress[J]. Plant Physiology Communications, 2003, 39(5), 493-495. ]
[29] Larcher W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups[M]. New York:Springer Science & Business Media, 2003.
[30] 颉敏华, 张继澍, 郁继华,等. D1蛋白周转和叶黄素循环在青花菜叶片强光破坏防御中的作用[J]. 中国农业科学, 2009, 42(5):1582-1589. [Jie Minhua, Zhang Jishu, Yu Jihua, et al. The role of D1 protein turnover and xanthophylls cycle in protecting photosynthetic apparatus of Broccoli leaves against photodamage[J]. Scientia Agricultura Sinica, 2009, 42(5):1582-1589. ]
[31] Umena Y, Kawakami K, Shen J R, et al. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å[J]. Nature, 2011, 473(7345):55.[32] 许大全, 张玉忠, 张荣铣. 植物光合作用的光抑制[J]. 植物生理学通讯, 1992,28(4):237-243. [Xu Daquan, Zhang Yuzhong, Zhang Rongxian. Photoinhibition of photosynthesis plants[J]. Plant Physiology Communications, 1992,28(4):237-243. ]
[33] 周振翔, 李志康, 陈颖,等. 叶绿素含量降低对水稻叶片光抑制与光合电子传递的影响[J]. 中国农业科学, 2016, 49(19):3709-3720. [Zhou Zhenxiang, Li Zhikang, Chen Ying, et al. Effects of reduced chlorophyll content on photoinhibition and photosynthetic electron transport in rice leaves[J]. Scientia Agricultura Sinica, 2016, 49(19):3709-3720. ]
[34] Blankenship R E, Chen M. Spectral expansion and antenna reduction can enhance photosynthesis for energy production[J]. Current opinion in chemical biology, 2013, 17(3): 457-461.
[35] 代欣, 胡举伟, 张秀丽,等. 植物光合机构对光环境的适应机制:状态转换[J]. 应用生态学报, 2016, 27(5):1674-1682. [Dai Xin, Hu Juwei, Zhang Xiuli, et al. Adaptive mechanism of photosynthetic apparatus of plants to light environment: State transition[J]. Chinese Journal of Applied Ecology, 2016, 27(5):1674-1682. ]
[36] 付忠, 谢世清, 徐文果,等. 不同光照强度下谢君魔芋的光合作用及能量分配特征[J]. 应用生态学报, 2016, 27(4):1177-1188. [Fu zhong, Xie Shiqing, Xu Wenguo, et al. Characteristics of photosynthesis and light energy partitioning in Amorphophallus xiei grown along a light-intensity gradient[J]. Chinese Journal of Applied Ecology, 2016, 27(4):1177-1188. ]
[37] 高杰, 张仁和, 王文斌,等. 干旱胁迫对玉米苗期叶片光系统Ⅱ性能的影响[J]. 应用生态学报, 2015, 26(5):1391-1396. [Gao Jie, Zhang Renhe, Wang Wenbin, et al. Effects of drought stress on performance of photosystem Ⅱ in maize seedling stage[J]. Chinese Journal of Applied Ecology, 2015, 26(5):1391-1396. ]
[38] Hager A, Holocher K. Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease[J]. Planta, 1994, 192(4): 581-589.
[39] Qin X, Suga M, Kuang T, et al. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex[J]. Science, 2015, 348(6238): 989-995.
[40] Shen J R. The structure of photosystem II and the mechanism of water oxidation in photosynthesis[J]. Annual Review of Plant Biology, 2015, 66: 23-48.
[41] 郭春爱. 低叶绿素b对水稻光合机构及其热稳定性的影响[D]. 南京:南京农业大学, 2007. [Guo Chun’ai. Effects of Low Content Chlorophyll b on Photosynthetic Apparatus and Thermostability in Rice[D]. Nanjing: Nanjing Agricultural University, 2007. ]
[42] 郭春爱, 刘芳, 许晓明. 叶绿素b缺失与植物的光合作用[J]. 植物生理学通讯, 2006, 42(5): 967-973. [Guo Chun’ai, Liu Fang, Xu Xiaoming.Chlorophyll-b deficient and photosynthesis in plants[J]. Plant Physiology Communications, 2006, 42(5): 967-973. ]
[43] Croce R. A close view of photosystem I[J]. Science, 2015, 348(6238):970-971.
[44] 陈新斌. 海水胁迫下菠菜叶片叶黄素循环调控叶绿素代谢的机理研究[D]. 南京:南京农业大学,2013. [Chen Xinbin. The Mechanism of Xanthophyll Cycle Regulation on Chlorophyll Metabolism of Spinach Leaves under Seawater Stress[D]. Nanjing: Nanjing Agricultural University, 2013. ]
[45] 吴甘霖,羊礼敏,段仁燕,等. 遮荫对大别山五针松幼苗光合色素和光合作用的影响[J]. 安庆师范学院学报(自然科学版), 2016, 22(3): 106-110. [Wu Ganlin, Yang Limin, Duan renyan, et al. Shading on the Photosynthetic Physiological Characteristics and Photosynthetic Pigments of Pinus dabeshanesis Seedlings[J]. Journal of Anqing Teachers College( Natural Science Edition), 2016, 22(3): 106-110. ]
[46] 谢红英,郭春晓,田素波,等. 温光交叉胁迫对日本红枫叶片叶绿素荧光和叶黄素循环的影响[J]. 山东农业科学,2017,5:14-17. [Xie Hongying, Guo Chunxiao, Tian Subo, et al. Effects of intercross stress by temperature and light on chlorophyll fluorescence and xanthophyll cycle in Acer palmatum atropurpureum Leaves[J]. Shandong Agricultural Sciences, 2017,5:14-17,36. ]
[47] 田艳春. 不同遮荫时间对萝卜幼苗生长及叶绿素含量的影响[J]. 赤峰学院学报(自然科学版), 2016, 32(11): 14-16. [Tian Yanchun. Effects of different shading time on radish seedling growth and chlorophyll content[J]. Journal of Chifeng College( Natural Science Edition), 2016, 32(11): 14-16. ]
[48] van Amerongen H, Croce R. Light harvesting in photosystem II[J]. Photosynthesis Research, 2013, 116(2/3): 251-263.
[49] 陶宗娅, 邹琦. 植物光合作用光抑制分子机理及其光保护机制[J]. 西南农业学报, 1999, 12(s2):9-18. [Tao Zongya, Zou Qi. Molecular mechanisms of photodamage and protective mechanism against photoinhibition and photodamage in photosynthetic apparatus of higher plant[J]. Southwest China Journal of Agricultural Sciences, 1999, 12(Suppl.2):9-18. ]
[50] 贾虎森, 韩亚琴. 高等植物光合作用的光抑制研究进展[J]. 植物学通报, 2000, 17(3):218-224. [Jia Husen, Han Yaqin. Advances in studies on photoinhibition in photosynthesis of higher plants[J].Chinese Bulletin of Botany, 2000, 17(3):218-224. ]
[51] 王强, 温晓刚, 张其德. 光合作用光抑制的研究进展[J]. 植物学通报, 2003, 20(5):539-548. [Wang Qiang, Wen Xiaogang, Zhang Qide. Progress in studies on photoinhibition[J]. Chinese Bulletin of Botany, 2003, 20(5):539-548. ]
[52] 孙艳,徐伟君,范爱丽. 高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响[J]. 应用生态学报, 2006, 17(3):399-402. [Sun Yan, Xu Weijun, Fan Aili. Effects of salicylic acid on chlorophyll fluorescence and xanthophyll cycle in cucumber leaves under high temperature and strong light[J]. Chinese Journal of Applied Ecology, 2006, 17(3):399-402. ]
[53] Müller P, Li X P, Niyogi K K. Non-photochemical quenching. A response to excess light energy[J]. Plant Physiology, 2001, 125(4):1558-1566.
[54] Gilmore A M. Xanthophyll cycle-dependent nonphotochemical quenching in photosystem II: Mechanistic insights gained from Arabidopsis thaliana L. mutants that lack violaxanthin deepoxidase activity and/or lutein[J]. Photosynthesis Research, 2001, 67(1/2): 89-101.
[55] Leipner J, Stamp P, Fracheboud Y. Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves[J]. Planta, 2000, 210(6): 964-969.
[56] Xu C C, Kuang T, Li L, et al. D1 protein turnover and carotene synthesis in relation to zeaxanthin epoxidation in rice leaves during recovery from low temperature photoinhibition[J]. Functional Plant Biology, 2000, 27(3): 239-244.
[57] 赵顺. 遮荫处理对臭柏实生苗光合特性和快速叶绿素荧光特征的影响[D]. 保定:河北农业大学, 2014. [Zhao Shun. Effects of Shading Rreatments on Photosynthetic Characteristics and Chlorophyll a Fluorescence Transient of Sabina vulgaris Seedlings[D]. Baoding: Agricultural University of Hebei,2014. ]
[58] 张会慧, 张秀丽, 李鑫, 等. 盐胁迫下桑树叶片D1蛋白周转和叶黄素循环对PSⅡ的影响[J].林业科学, 2013, 49(1):99-106. [Zhang Huihui, Zhang Xiuli, Li Xin, et al. Role of D1 protein turnover and xanthophylls cycle in protecting of photosystem Ⅱ functions in leaves of Morus alba under NaCl stress[J]. Scientia Silvae Sinicae, 2013, 49(1):99-106. ]
[59] Büchel C. Evolution and function of light harvesting proteins[J]. Journal of plant physiology, 2015, 172: 62-75.
[60] 王芳, 杨莎, 郭峰,等. 钙对花生幼苗生长、活性氧积累和光抑制程度的影响[J]. 生态学报, 2015, 35(5): 1496-1504. [Wang Fang, Yang Sha, Guo Feng, et al. Effects of calcium on peanut ( Arachis Hypogaea L.) seedling growth,accumulation of reactive oxygen species and photoinhibition[J]. Acta Ecologica sinica, 2015, 35(05): 1496-1504.]
[61] Asada K.Production and scavenging of reactive oxygen species in chloroplasts and their functions[J]. Plant Physiology,2006,141(2) : 391-396.
[62] Nishiyama Y,Allakhverdiev S I,Murata N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II [J] Biochimicaet Biophysica Acta ( BBA) - Bioenergetics,2006,1 757(7) : 742-749.
[63] 秦立琴, 张悦丽, 郭峰,等. 强光下高温与干旱胁迫对花生光系统的伤害机制[J]. 生态学报, 2011, 31(7): 1835-1843. [Qin Liqin, Zhang Yueli, Guo Feng, et al. Damaging mechanisms of peanut ( Arachis hypogaea L.) photosystems caused by high-temperature and drought under high irradiance[J]. Acta Ecologica sinica, 2011, 31(7): 1835-1843. ]
[64] 郭玉朋. 植物光呼吸途径研究进展[J]. 草业学报,2014,23(4):322-329. [Guo Yupeng. A study on advances in plant photorespiration[J]. Acta Prataculturae Sinica, 2014,23(4):322-329.]
[65] Kozaki A, Takeba G. Photorespiration protects C3 plants from photooxidation[J]. Nature, 1996, 384(6609):557-560.
[66] 郭连旺, 许大全, 沈允钢. 棉花叶片光合作用的光抑制和光呼吸的关系[J]. 科学通报, 1995, 40(20): 1885-1888. [Guo Lianwang, Xu Daquan, Shen Yungang. Relationship between photoinhibition of photosynthesis and photorespiration in leaves of cotton[J]. Chinese Science Bulletin, 1995, 40(20): 1885-1888. ]
/
〈 | 〉 |