Applicability of ITPCAS and CMORPH Precipitation Datasets over Shaanxi Province

Expand
  • (1. College of Environment and Planning, Henan University, Kaifeng, 475004, Henan, China;2. School of Geography and Environment, Baoji University of Arts and Sciences, Baoji, 721013, Shaanxi, China;3. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China)

Received date: 2017-05-03

  Revised date: 2017-01-28

  Online published: 2018-06-01

Abstract

 Compared with the precipitation data from meteorological stations, the precipitation products based on remote sensing can be used to well present the spatial distribution of precipitation, whereas the accuracy of remote sensing products generally cannot match that of the meteorological stations. Thus it is necessary to evaluate the common used precipitation products are. In this paper, the reliability of two satellites precipitation products ITPCAS and CMORPH with high spatial-temporal resolution over Shaanxi Province was evaluated using the observed data from 36 national and 23 regional meteorological stations. Analysis based on the indexes including the detection rate of precipitation events, capture rate over all precipitation magnitudes and errors of precipitation at different spatial-temporal scales was adopted in the evaluation. Results showed that the ITPCAS was accurate for the Shaanxi region because of its low bias of average daily precipitation, low false alarming ratio and missed ratio, high capture rate of precipitation for grades higher than moderate magnitude, good presentation of the distribution and variation pattern of the precipitation. The spatial distribution and change pattern of precipitation in the Shaanxi region could well present by ITPCAS precipitation. CMORPH also showed the spatial distribution pattern of precipitation in the Shaanxi region. However, the errors were comparatively higher as CMORPH did not merge any data from meteorological stations. Further revisions of the CMORPH are needed to ensure the accuracy of the products.

Cite this article

WANG Yu-dan, CHEN Hao, LIU Canran, DING Yong-jian . Applicability of ITPCAS and CMORPH Precipitation Datasets over Shaanxi Province[J]. Arid Zone Research, 2018 , 35(3) : 579 -588 . DOI: 10.13866/j.azr.2018.03.10

References

[1] 徐小钰, 朱记伟, 解建仓, 等. 陕西省1470—2012年旱涝灾害时空分布特征及演变趋势分析[J]. 西安理工大学学报, 2015, 31(2): 231-237.[Xu Xiaoyu, Zhu Jiwei, Xie Jiancang, et al. Analysis of spatial and temporal distribution characteristics and evolution trend of drought and flood disasters from 1470 to 2012 in Shaanxi Province[J]. Journal of Xi'an University of Technology, 2015, 31(2): 231-237.]
[2] 任国玉, 袁玉江, 柳艳菊, 等. 我国西北干燥区降水变化规律[J]. 干旱区研究, 2016, 33(1):1-19. [Ren Guoyu, Yuan Yujiang, Liu Yanju, et al. Changes in precipitation over northwest China [J]. Arid Zone Research, 2016, 33(1): 1-19.]
[3] 王炳钦, 江源, 董满宇, 等. 1961—2010年北方半干旱区极端降水时空变化[J]. 干旱区研究, 2016, 33(5): 913-920. [Wang Bingqin, Jiang Yuan, Dong Manyu, et al. Spatiotemporal variations of extreme precipitation in the semiarid region in north China during the period of 1961-2010[J]. Arid Zone Research, 2016, 33(5): 913-920.]
[4] 李英杰, 延军平, 刘永林. 秦岭南北气候干湿变化与降水非均匀性的关系[J]. 干旱区研究, 2016,33(3):619-627. [Li Yingjie, Yan Junping, Liu Yonglin. Relationship between dryness/wetness and precipitation heterogeneity in the north and south of the Qinling Mountain [J]. Arid Zone Research, 2016, 33(3): 619-627.]
[5] 季漩, 罗毅. TRMM降水数据在中天山区域的精度评估分析[J]. 干旱区地理, 2013, 36(2): 253-262. [Ji Xuan, Luo Yi. Quality assessment of the TRMM precipitation data in mid Tianshan mountains [J]. Arid Land Geography, 2013, 36(2): 253-262.]
[6]  Chen Y, Yang K, He J, et al. Improving land surface temperature modeling for dry land of China[J]. Journal of Geophysical Research-Atmospheres, 2011, 116(D20104): 12-20.
[7]  Joyce R J, Janowiak J E, Arkin P A, et al. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. Journal of Hydrometeorology, 2004, 5(3): 487-503.
[8]  Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, Multiyear, Combined-sensor Precipitation Estimates at Fine Scales[M]. Netherlands: Springer, 2010: 3-22.
[9] 王芬, 曹杰, 李腹广, 等. 多套格点降水资料在云南及周边地区的对比[J]. 应用气象学报, 2013, 24(4): 472-483.[Wang Fen, Cao Jie, Li Fuguang, et al. Datasets and rain gauge precipitation over Yunnan and the surrounding areas[J]. Journal of Applied Meteorological Science, 2013, 24(4): 472-483.]
[10] 江志红, 卢尧, 丁裕国. 基于时空结构指标的中国融合降水资料质量评估[J]. 气象学报, 2013, 71(5): 891-900.[Jiang Zhihong, Lu Yao, Ding Yuguo. Analysis of the high-resolution merged precipitation products over China based on the temporal and spatial structure score indices[J]. Acta Meteorologica Sinica, 2013, 71(5): 891-900.]
[11] 胡增运, 倪勇勇, 邵华, 等. CFSR、ERA-Interim和MERRA降水资料在中亚地区的适用性[J]. 干旱区地理, 2013, 36(4): 700-708.[Hu Zengyun, Ni Yongyong, Shao Hua, et al. Applicability study of CFSR, ERA-Interim and MERRA precipitation estimates in Central Asia[J]. Arid Land Geography, 2013, 36(4): 700-708.]
[12] 姜贵祥, 孙旭光. 格点降水资料在中国东部夏季降水变率研究中的适用性[J]. 气象科学, 2016, 36(4): 448-456.[Jiang Guixiang, Sun Xuguang. Reliabilities of gridded precipitation datasets in studying summer precipitation variabilities over the eastern China[J]. Journal of the Meteorological Sciences, 2016, 36(4): 448-456.]
[13] 阚宝云, 苏凤阁, 童凯, 等. 四套降水资料在喀喇昆仑山叶尔羌河上游流域的适用性分析[J]. 冰川冻土, 2013, 35(3): 710-722.[Kan Baoyun, Su Fengge, Tong Kai, et al. Analysis of the applicability of four precipitation datasets in the upper reaches of the Yarkant River, the Karakorum[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 710-722.]
[14] 李琼, 杨梅学, 万国宁, 等. TRMM 3B43降水数据在黄河源区的适用性评价[J]. 冰川冻土, 2016, 38(3): 620-633.[Li Qiong, Yang Meixue, Wan Guoning, et al. Analysis of the accuracy of TRMM 3B43 precipitation data in the Source Region of the Yellow River[J]. Journal of Glaciology and Geocryology, 2016, 38(3): 620-633.]
[15] 郝振纯, 童凯, 张磊磊, 等. TRMM降水资料在青藏高原的适用性分析[J]. 水文, 2011, 31(5): 18-23.[Hao Zhenchun, Tong Kai, Zhang Leilei, et al. Applicability analysis of TRMM precipitation estimates in Tibetan Plateau[J]. Journal of China Hydrology, 2011, 31(5): 18-23.]
[16] 张蒙, 黄安宁, 计晓龙, 等. 卫星反演降水资料在青藏高原地区的适用性分析[J]. 高原气象, 2016, 35(1): 34-42.[Zhang Meng, Huang Anning, Ji Xiaolong, et al. Validation of satellite precipitation products over Qinghai-Xizang Plateau region[J]. Plateau Meteorology, 2016, 35(1): 34-42.]
[17] 许时光, 牛铮, 沈艳, 等. CMORPH卫星降水数据在中国区域的误差特征研究[J]. 遥感技术与应用, 2014, 29(2): 189-194.[Xu Shiguang, Niu Zheng, Shen Yan, et al. A research into the characteristics of CMORPH remote sensing precipitation error in China[J]. Remote Sensing Technology and Application, 2014, 29(2): 189-194.]
[18] 沈艳, 潘旸, 宇婧婧, 等. 中国区域小时降水量融合产品的质量评估[J]. 大气科学学报, 2013, 36(1): 37-46.[Shen Yan, Pan Yang, Yu Jingjing, et al. Quality assessment of hourly merged precipitation product over China[J]. Transactions of Atmospheric Sciences, 2013, 36(1): 37-46.]
[19] 旷达, 沈艳, 牛铮, 等. 卫星反演降水产品误差随时空分辨率和雨强的变化特征分析[J]. 遥感信息, 2012, 27(4): 75-81.[Kuang Da, Shen Yan, Niu Zheng, et al. analysis on uncertainty of satellite retrieved precipitation products[J]. Remote Sensing Information, 2012, 27(4): 75-81.]
[20] Shen Y, Xiong A, Wang Y, et al. Performance of High-Resolution Satellite Precipitation Products over China[J]. Journal of Geophysical Research-Atmospheres, 2010, 115(D2): 11-20.
[21] 何思为, 南卓铜, 张凌, 等. 用VIC模型模拟黑河上游流域水分和能量通量的时空分布[J]. 冰川冻土, 2015, 37(1): 211-225.[He Siwei, Nan Zhuotong, Zhang Ling,et al. Spatial-temporal distribution of water and energy fluxes in the upper reaches of the Heihe River simulated with VIC model[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 211-225.]
[22] 齐文文, 张百平, 庞宇, 等. 基于TRMM数据的青藏高原降水的空间和季节分布特征[J]. 地理科学, 2013, 33(8): 999-1 005.[Qi Wenwen, Zhang Baiping, Pang Yu, et al. TRMM-data-based spatial and seasonal patterns of precipitation in the Qinghai-Tibet Plateau[J]. Scientia Geographica Sinica, 2013, 33(8): 999-1 005.]
[23] 李慧, 杨涛, 何祺胜, 等.新疆天山山区TRMM卫星降水数据的复合校正方法[J].干旱区研究, 2017, 34(3): 585-590.[Li Hui, Yang Tao, He Qisheng, et al. Composite correction method of TRMM satellite precipitation data in the Tianshan Mountains, Xinjiang[J]. Arid Zone Research, 2017, 34(3): 585-590.]
[24] 宇婧婧, 沈艳, 潘旸, 等. 概率密度匹配法对中国区域卫星降水资料的改进[J]. 应用气象学报, 2013, 24(5): 544-553.[Yu Jingjing, Shen Yan, Pan Yang, et al. Improvement of satellite-based precipitation estimates over China based on probability density function matching method[J]. Journal of Applied Meteorological Science, 2013, 24(5): 544-553.]
[25] Liston G E, Elder K, A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)[J]. Journal of Hydrometeorology, 2006, 7(2): 217-234.
[26] Fieller E C, Hartley H O, Pearson E S. Tests for rank correltion coefficients[J]. Biometrika, 1957, 3(44): 470-481.
[27] 成璐, 沈润平, 师春香, 等. CMORPH和TRMM 3B42降水估计产品的评估检验[J]. 气象, 2014, 40(11): 1 372-1 379.[Cheng Lu, Shen Runping, Shi Chunxiang, et al. Evaluation and verification of CMORPH and TRMM 3B42 precipitation estimation products[J]. Meteorological Monthly, 2014, 40(11): 1 372-1 379.]
[28] Shen Y, Zhao P, Pan Y, et al. A high spatiotemporal gauge-satellite merged precipitation analysis over China[J]. Journal of Geophysical Research-Atmospheres, 2014, 119(6): 3 063-3 075.
Outlines

/