Weather and Climate

Formation mechanism and energy source of a heavy rainfall event in the eastern northwest region

  • SHI Xia ,
  • LIU Weicheng ,
  • CHEN Xiaoyan ,
  • HUANG Yuxia ,
  • TAN Dan ,
  • WU Jiye
Expand
  • 1. Institute of Arid Meteorology, China Meteorological Administration, Gansu Key Laboratory of Arid Climatic Changeand Reducing Disaster, Key Laboratory of Arid Climatic Change, Lanzhou 730020, Gansu, China
    2. Lanzhou Central Meteorological Observatory, Lanzhou 730020, Gansu, China
    3. Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China

Received date: 2024-07-31

  Revised date: 2025-01-01

  Online published: 2025-04-10

Abstract

This study analyzes the spatial and temporal distribution, circulation patterns, and water vapor transport characteristics of a heavy precipitation event in Longnan City, Gansu Province, on July 10, 2020, using hourly precipitation observations and ERA5 reanalysis data. Additionally, atmospheric moisture energy (MSE) was introduced to investigate the unstable energy sources of convective activity, providing a new perspective for the re-evaluation and diagnosis of severe convective weather in the northwest region, as well as new reference indicators for business forecasting. The results show that: (1) The heavy precipitation exhibited high intensity, obvious locality, and strong convection. At 500 hPa, the plateau shortwave trough facilitated the convergence of cold and warm air, while at 700 hPa, the southerly airflow combined with cyclonic shear provided favorable conditions for water vapor transport and dynamic uplift. (2) The occurrence of heavy precipitation was accompanied by MSE charging and discharging. The MSE accumulates continuously before the peak of heavy precipitation, putting the atmosphere in a charging state. After peaking, the MSE significantly decreased, and the atmosphere was in a state of energy release. (3) The mechanisms of atmospheric charging differed by vertical height, with vertical MSE transport in the lower troposphere contributing positively, whereas horizontal advection contributing negatively. Horizontal advection, particularly meridional advection, positively contributed to the middle layer, whereas vertical transport contributed negatively. The increase in MSE transport in the upper troposphere is mainly driven by meridional advection. (4) The vertical transport of water vapor influenced the MSE in the lower troposphere, whereas the latent heat energy from water vapor controlled MSE in the middle layer. The meridional advection of water vapor increases the MSE due to abnormal southerly winds. High-level MSE is dominated by the internal energy term, and the main contribution to the increase in MSE is the meridional advection caused by the combination of westerly winds and temperature gradients that are warm in the west and cold in the east.

Cite this article

SHI Xia , LIU Weicheng , CHEN Xiaoyan , HUANG Yuxia , TAN Dan , WU Jiye . Formation mechanism and energy source of a heavy rainfall event in the eastern northwest region[J]. Arid Zone Research, 2025 , 42(4) : 600 -612 . DOI: 10.13866/j.azr.2025.04.03

References

[1] 白肇烨, 徐国昌, 夏建平, 等. 中国西北天气[M]. 北京: 气象出版社, 1988.
  [Bai Zhaoye, Xu Guochang, Xia Jianping, et al. Northwest China Weather[M]. Beijing: Meteorological Press, 1988.]
[2] 张之贤, 张强, 赵庆云, 等. 陇东南地区短历时降水特征及其分布规律[J]. 中国沙漠, 2013, 33(4): 1184-1190.
  [Zhang Zhixian, Zhang Qiang, Zhao Qingyun, et al. Character and distribution of short-duration precipitation in Southeast Gansu, China[J]. Journal of Desert Research, 2013, 33(4): 1184-1190.]
[3] 白晓平, 王式功, 赵璐, 等. 西北地区东部短时强降水概念模型[J]. 高原气象, 2016, 35(5): 1248-1256.
  [Bai Xiaoping, Wang Shigong, Zhao Lu, et al. Conceptual models of short-time heavy rainfall in the east of Northwest China[J]. Plateau Meteorology, 2016, 35(5): 1248-1256.]
[4] 王宝鉴, 孔祥伟, 傅朝, 等. 甘肃陇东南一次大暴雨的中尺度特征分析[J]. 高原气象, 2016, 35(6): 1551-1564.
  [Wang Baojian, Kong Xiangwei, Fu Zhao, et al. Analysis on mesoscale characteristics of a rainstorm process in Southeastern Gansu[J]. Plateau Meteorology, 2016, 35(6): 1551-1564.]
[5] 樊晓春, 王若升, 李常德, 等. 2010年7月甘肃东部一次致灾大暴雨诊断[J]. 干旱气象, 2013, 31(2): 342-347.
  [Fan Xiaochun, Wang Ruosheng, Li Changde, et al. Diagnostic analysis of a heavy rainstorm in the east of Gansu[J]. Journal of Arid Meteorology, 2013, 31(2): 342-347.]
[6] 徐东坡, 李金明, 周祖昊, 等. 1956—2018年中国降水特征的时空分布规律研究[J]. 水利水电技术, 2020, 51(10): 20-27.
  [Xu Dongpo, Li Jinming, Zhou Zuhao, et al. Study on the spatial and temporal distribution of precipitation characteristics in China from 1956 to 2018[J]. Water Resources and Hydropower Engineering, 2020, 51(10): 20-27.]
[7] 卢珊, 胡泽勇, 王百朋, 等. 近56年中国极端降水事件的时空变化格局[J]. 高原气象, 2020, 39(4): 683-693.
  [Lu Shan, Hu Zeyong, Wang Baipeng, et al. Spatio-temporal patterns of extreme precipitation events over China in recent 56 years[J]. Plateau Meteorology, 2020, 39(4): 683-693.]
[8] 李娟, 闫会平, 朱志伟. 中国夏季极端气温与降水事件日数随平均气温变化的定量分析[J]. 高原气象, 2020, 39(3): 532-542.
  [Li Juan, Yan Huiping, Zhu Zhiwei. Quantitative analysis of changes in summer extreme temperatures and precipitation days relative to mean temperature increase in China[J]. Plateau Meteorology, 2020, 39(3): 532-542.]
[9] 马莉, 杨晓军, 王勇, 等. 1990—2019年甘肃汛期极端小时降水特征[J]. 高原气象, 2023, 42(4): 993-1004.
  [Ma Li, Yang Xiaojun, Wang Yong, et al. Characteristics of extreme hourly precipitation during the flood season in Gansu Province from 1990 to 2019[J]. Plateau Meteorology, 2023, 42(4): 993-1004.]
[10] 刘新伟, 王澄海, 郭润霞, 等. 1981—2018年甘肃省极端暴雨天气过程的气候与环流特征[J]. 干旱气象, 2021, 39(5): 750-758.
  [Liu Xinwei, Wang Chenghai, Guo Runxia, et al. Climate and circulation characteristics of extreme rainstorm processes in Gansu from 1981 to 2018[J]. Journal of Arid Meteorology, 2021, 39(5): 750-758.]
[11] 苏军锋, 张锋, 黄玉霞, 等. 甘肃陇南市短时强降水时空分布特征及中尺度分析[J]. 干旱气象, 2021, 39(6): 966-973.
  [Su Junfeng, Zhang Feng, Huang Yuxia, et al. Spatial-temporal distribution characteristics and mesoscale analysis of short-term heavy precipitation in Longnan, Gansu[J]. Journal of Arid Meteorology, 2021, 39(6): 966-973.]
[12] 刘新伟, 段海霞, 杨晓军, 等. 甘肃东部两次短时强降水天气过程对比分析[J]. 干旱气象, 2017, 35(5): 868-873.
  [Liu Xinwei, Duan Haixia, Yang Xiaojun, et al. Comparative analysis of two short-term strong rainfall processes in eastern Gansu[J]. Journal of Arid Meteorology, 2017, 35(5): 868-873.]
[13] 许东蓓, 许爱华, 肖玮, 等. 中国西北四省区强对流天气形势配置及特殊性综合分析[J]. 高原气象, 2015, 34(4): 973-981.
  [Xu Dongbei, Xu Aihua, Xiao Wei, et al. Comprehensive analysis on the severe convective weather situation configuration and its particularity in Northwest China[J]. Plateau Meteorology, 2015, 34(4): 973-981.]
[14] 孔祥伟, 李晨蕊, 杨秀梅, 等. 甘肃河东夏季区域性短时强降水环流形势分类特征[J]. 高原气象, 2024, 43(2): 329-341.
  [Kong Xiangwei, Li Chenrui, Yang Xiumei, et al. Circulation situation characteristics of regional short-time heavy rainfall in eastern Gansu during summer[J]. Plateau Meteorology, 2024, 43(2): 329-341.]
[15] 赵庆云, 傅朝, 刘新伟, 等. 西北东部暖区大暴雨中尺度系统演变特征[J]. 高原气象, 2017, 36(3): 697-704.
  [Zhao Qingyun, Fu Zhao, Liu Xinwei, et al. Characteristics of mesoscale system evolution of torrential rain in warm sectors over Northwest China[J]. Plateau Meteorology, 2017, 36(3): 697-704.]
[16] 傅朝, 杨晓军, 周晓军, 等. 2013年6月19—20日甘肃陇东南暖区暴雨多普勒雷达特征分析[J]. 气象, 2015, 41(9): 1095-1103.
  [Fu Zhao, Yang Xiaojun, Zhou Xiaojun, et al. Analysis on Doppler radar characteristics of warm-area rainstorms in southeastern Gansu during June 19-20, 2013[J]. Meteorological Monthly, 2015, 41(9): 1095-1103.]
[17] 沙宏娥, 傅朝, 刘维成, 等. 西北东部半干旱区一次极端特大暴雨的触发和维持机制[J]. 干旱气象, 2022, 40(6): 933-944.
  [Sha Honge, Fu Zhao, Liu Weicheng, et al. Mechanism of trigger and maintenance during an extremely torrential rain in semi-arid region of eastern Northwest China[J]. Journal of Arid Meteorology, 2022, 40(6): 933-944.]
[18] 樊李苗, 俞小鼎. 中国短时强对流天气的若干环境参数特征分析[J]. 高原气象, 2013, 32(1): 156-165.
  [Fan Limiao, Yu Xiaoding. Characteristic analyses on environmental parameters in short-term severe convective weather in China[J]. Plateau Meteorology, 2013, 32(1): 156-165.]
[19] Iii C A D. The distinction between large-scale and mesoscale contribution to severe convection: A case study example[J]. Weather & Forecasting, 1987, 2(1): 3-16.
[20] Yang M, Shi X, Yuan C, et al. Summer extreme precipitation in Southern China from the perspective of moisture static energy[J]. Journal of Climate, 2023, 36(15): 4967-4986.
[21] Luo Yali, Zhang Renhe, Wan Qilin, et al. The Southern China Monsoon Rainfall Experiment (SCMREX)[J]. Bulletin of the American Meteorological Society, 2017, 98(5): 999-1013.
[22] 郑永光, 黄振强, 陈炯, 等. 对流风暴大气不稳定机制研究的若干问题[J]. 暴雨灾害, 2024, 43(3): 266-275.
  [Zheng Yongguang, Huang Zhenqiang, Chen Jiong, et al. Some issues in studies on the atmospheric instability of convective storms[J]. Torrential Rain and Disasters, 2024, 43(3): 266-275.]
[23] 郑永光, 陶祖钰, 俞小鼎. 强对流天气预报的一些基本问题[J]. 气象, 2017, 43(6): 641-652.
  [Zheng Yongguang, Tao Zuyu, Yu Xiaoding. Some essential issues of severe convective weather forecasting[J]. Meteorological Monthly, 2017, 43(6): 641-652.]
[24] Crook Andrew N. Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields[J]. Monthly Weather Review, 1996, 124(8): 1767.
[25] Ninomiya K. Large- and mesoscale features of Meiyu-Baiu front associated with intense rainfall[J]. East Asian Monsoon, 2004, 2: 404-435.
[26] 李俊, 王东海, 王斌. 中尺度对流系统中的湿中性层结结构特征[J]. 气候与环境研究, 2012, 17(5): 617-627.
  [Li Jun, Wang Donghai, Wang Bin. Structure characteristics of moist neutral stratification in mesoscale convective systems[J]. Climatic and Environmental Research, 2012, 17(5): 617-627.]
[27] Chen Guixing, Yoshida R, Sha Weiming, et al. Convective instability associated with the eastward-propagating rainfall episodes over Eastern China during the warm season[J]. Journal of Climate, 2014, 27(6): 2331-2339.
[28] 王秀明, 俞小鼎, 周小刚. 雷暴潜势预报中几个基本问题的讨论[J]. 气象, 2014, 40(4): 389-399.
  [Wang Xiuming, Yu Xiaoding, Zhou Xiaogang. Discussion on basic issues of thunderstorm potential forecasting[J]. Meteorological Monthly, 2014, 40(4): 389-399.]
[29] Neelin J D, Held I M. Modeling tropical convergence based on the moist static energy budget[J]. Monthly Weather Review, 1987, 115(1): 3-12.
[30] Hendon H H, Liebmann B. Organization of convection within the Madden-Julian oscillation[J]. Journal of Geophysical Research Atmospheres, 1994, 99(D4): 8073-8083.
[31] Bladé Ileana, Hartmann D L. Tropical intraseasonal oscillations in a simple nonlinear model[J]. Journal of Atmospheric Sciences, 1993, 50(17): 2922-2939.
[32] Maloney Eric D. The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model[J]. Journal of Climate, 2009, 22(3): 711-729.
[33] Sobel A, Wang S, Kim D. Moist static energy budget of the MJO during DYNAMO[J]. Journal of the Atmospheric Sciences, 2014, 71(11): 4276-4291.
[34] Feng T, Yu J Y, Yang X Q, et al. Convective coupling in tropical-depression-type waves. Part II: Moisture and moist static energy budgets[J]. Journal of the Atmospheric Sciences, 2020, 77(10): 3423-3440.
Outlines

/