Plant Ecology

Effects of drought stress and rehydration on the physiological characteristics of Pinus sylvestris var. mongolica seedlings

  • WANG Zixiang ,
  • REN Yue ,
  • LU Ying ,
  • GAO Guanglei ,
  • DING Guodong ,
  • ZHANG Ying
Expand
  • 1. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    2. College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
    3. State Key Laboratory for Efficient Production of Forest Resources, Beijing 100083, China
    4. Yanchi Ecology Research Station of the Mu Us Desert, Yanchi 751500, Ningxia, China
    5. Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing 100083, China
    6. Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing 100083, China

Received date: 2024-05-26

  Revised date: 2024-09-19

  Online published: 2024-12-20

Abstract

In this study, we investigated the physiological responses of Pinus sylvestris var. mongolica seedlings to drought stress and subsequent rehydration. A pot experiment was conducted using 2-year-old seedlings subjected to five water treatments, including control (80%), light drought (40%), moderate drought (20%), severe drought (10%), and extremely severe drought (5%). We measured leaf water content, photosynthesis, chlorophyll fluorescence, leaf osmoregulatory substances, and antioxidant enzyme activity during drought and after rehydration. The results showed the following: (1) The physiological state of the seedlings was minimally affected by the light drought. The activities of superoxide dismutase and peroxidase peaked under moderate and severe drought stress, increasing by 25.26% and 38.8%, respectively. Conversely, the net photosynthetic rate, transpiration rate, and photochemical quenching coefficient under extremely severe drought stress decreased by 94.76%, 87.19%, and 72.35%, respectively, while the leaf malondialdehyde content was the highest in this condition. (2) The chlorophyll fluorescence and leaf proline content of the seedlings were restored to control levels after rehydration. However, the average photosynthetic indices of rehydrated leaves only returned to 28.51% after extremely severe drought stress. Additionally, leaf water use efficiency, soluble sugar content, and antioxidant enzyme activity were significantly higher than the control after rehydration (P<0.05). In conclusion, extremely severe drought stress primarily reduces photosynthetic ability and disrupts the cell membrane stability of Pinus sylvestris var. mongolica seedlings. Conversely, rehydration after moderate drought improves water utilization and the scavenging ability of reactive oxygen species, thereby improving drought resistance. This improved information provides theoretical insights for the efficient cultivation, management, and evaluation of drought resistance in the Pinus sylvestris var. mongolica plantation.

Cite this article

WANG Zixiang , REN Yue , LU Ying , GAO Guanglei , DING Guodong , ZHANG Ying . Effects of drought stress and rehydration on the physiological characteristics of Pinus sylvestris var. mongolica seedlings[J]. Arid Zone Research, 2024 , 41(12) : 2120 -2131 . DOI: 10.13866/j.azr.2024.12.13

References

[1] Al-Ghussain L. Global warming: Review on driving forces and mitigation[J]. Environmental Progress Sustainable Energy, 2019, 38(1): 13-21.
[2] Haleh H, Matti H, Jenny L, et al. The impact of drought stress on the height growth of young Norway spruce full-sib and half-sib clonal trials in Sweden and Finland[J]. Forests, 2021, 12(4): 498-498.
[3] 庞志强, 余迪求. 干旱胁迫下的植物根系-微生物互作体系及其应用[J]. 植物生理学报, 2020, 56(2): 109-126.
  [Pang Zhiqiang, Yu Diqiu. Plant root-microbial interaction system under drought stress and its application[J]. Chinese Journal of Plant Physiology, 2020, 56(2): 109-126. ]
[4] Li P D, Zhu Y F, Song X L, et al. Negative effects of long-term moderate salinity and short-term drought stress on the photosynthetic performance of Hybrid pennisetum[J]. Plant Physiology and Biochemistry, 2020, 155: 93-104.
[5] 金思雨, 彭祚登. 刺槐和油松干旱胁迫响应研究进展[J]. 西北林学院学报, 2022, 37(4): 79-91.
  [Jin Siyu, Peng Zuodeng. Research progress on drought stress on Robinia pseudoacacia and Pinus tabuliformis[J]. Journal of Northwest Forestry University, 2022, 37(4): 79-91. ]
[6] Adams H D, Zeppel M J B, Anderegg W R L, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality[J]. Nature Ecology & Evolution, 2017, 1(9): 1285-1291.
[7] 赵娜, 赵旭, 李少宁, 等. 干旱复水下北京地区刺槐与油松叶绿素荧光特性研究[J]. 干旱地区农业研究, 2023, 41(2): 27-37.
  [Zhao Na, Zhao Xu, Li Shaoning, et al. Chlorophyll fluorescence characteristics of Robinia pseudoacacia and Pinus tabuliformis under drought stress and rehydration in Beijing area[J]. Agricultural Research in the Arid Areas, 2023, 41(2): 27-37. ]
[8] 曾露婧, 王国华. 干旱及复水对荒漠绿洲过渡带一年生草本植物生长及生理特性的影响[J]. 草业学报, 2024, 33(5): 41-57.
  [Zeng Lujing, Wang Guohua. Effects of drought and rehydration on growth and physiological characteristics of annual herbaceous plants from a desert-oasis ecotone[J]. Acta Prataculturae Sinica, 2024, 33(5): 41-57. ]
[9] 游韧, 邓湘雯, 胡彦婷, 等. 树木对干旱胁迫及复水的生理生态响应研究进展[J]. 林业科学, 2023, 59(11): 124-136.
  [You Ren, Deng Xiangwen, Hu Yanting, et al. Progress on physiological and ecological responses of trees to drought stress and rewatering[J]. Scientia Silvae Sinica, 2023, 59(11): 124-136. ]
[10] 路伟伟, 吴波, 白建华, 等. 樟子松人工林退化原因及研究展望[J]. 科学通报, 2023, 68(11): 1286-1297.
  [Lu Weiwei, Wu Bo, Bai Jianhua, et al. Causes and research prospects of the decline of Pinus sylvestris var. mongolica plantation[J]. Chinese Science Bulletin, 2023, 68(11): 1286-1297. ]
[11] 朱媛君, 山丹, 孙云海, 等. 天然樟子松林幼树更新格局及其影响因子分析[J]. 森林与环境学报, 2019, 39(4): 372-379.
  [Zhu Yuanjun, Shan Dan, Sun Yunhai, et al. Analysis of the regeneration pattern of natural Pinus sylvestris var. mongolica seedlings and its influencing factors[J]. Journal of Forestry and Environment, 2019, 39(4): 372-379. ]
[12] Yin D C, Wang H L, Qi J Y. The enhancement effect of calciumions on ectomycorrhizal fungi-mediated drought resistance in Pinus sylvestris var. mongolica[J]. Journal of Plant Growth Regulation, 2021, 40: 1389-1399.
[13] Deng J F, Yao J Q, Zheng X, et al. Transpiration and canopy stomatal conductance dynamics of Mongolian pine plantations in semiarid deserts, Northern China[J]. Agricultural Water Management, 2021, 249: 106806.
[14] 王凯, 芦珊, 刘畅, 等. 土壤含水量对樟子松幼苗非结构性碳水化合物及生长的影响[J]. 生态学杂志, 2023, 42(3): 617-625.
  [Wang Kai, Lu Shan, Liu Chang, et al. Effects of soil water content on non-structural carbohydrates and growth of Pinus sylvestris var. mongolica seedlings[J]. Chinese Journal of Ecology, 2023, 42(3): 617-625. ]
[15] 宋立宁, 朱教君, 康宏樟. 樟子松幼苗水力结构参数和生长特征对模拟降水梯度的响应[J]. 干旱区研究, 2013, 30(6): 1021-1027.
  [Song Lining, Zhu Jiaojun, Kang Hongzhang. Response of hydraulic structure parameters and growth characteristics of Pinus sylvestris var. mongolica seedlings to simulated precipitation gradient[J]. Arid Zone Research, 2013, 30(6): 1021-1027. ]
[16] Liu X, Zhang Q Y, Song M X, et al. Physiological responses of Robinia pseudoacacia and Quercus acutissima seedlings to repeated drought-rewatering under different planting methods[J]. Frontiers in Plant Science, 2021, 12: 760510.
[17] 何凌仙子, 贾志清, 刘涛, 等. 植物适应逆境胁迫研究进展[J]. 世界林业研究, 2018, 31(2): 13-18.
  [He Lingxianzi, Jia Zhiqing, Liu Tao, et al. Research progress on plant adaptation to aversity stress[J]. World Forestry Research, 2018, 31(2): 13-18. ]
[18] 郭米山. 沙地樟子松外生菌根真菌特性及其对樟子松幼苗的影响[D]. 北京: 北京林业大学, 2020.
  [Guo Mishan. Ectomycorrhizal Fungal Characteristics of Pinus sylvestris var. mongolica and Their Effects on the Seedlings[D]. Beijing: Beijing Forestry University, 2020. ]
[19] Liu C C, Liu Y G, Guo K, et al. Influence of drought intensity on the response of six woody Karst species subjected to successive cycles of drought and rewatering[J]. Physiologia Plantarum, 2010, 139: 39-54.
[20] 赵子涵, 王树森, 罗于洋, 等. 旱榆幼树对土壤失水及复水的生理响应过程研究[J]. 干旱区研究, 2022, 39(5): 1534-1542.
  [Zhao Zihan, Wang Shusen, Luo Yuyang, et al. Physiological response of a young Gansu elm(Ulmus glaucescens) to soil water loss and rehydration[J]. Arid Zone Research, 2022, 39(5): 1534-1542. ]
[21] 张玉玉, 王进鑫, 马戌, 等. 土壤干旱及复水对侧柏叶绿素荧光参数的影响[J]. 水土保持研究, 2021, 28(2): 242-247.
  [Zhang Yuyu, Wang Jinxin, Ma Xu, et al. Effects of drought and rewatering on chlorophyll fluorescence parameters of Platycladus orientalis[J]. Research of Soil and Water Conservation, 2021, 28(2): 242-247. ]
[22] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 1-231.
  [Gao Junfeng. Plant Physiology Experimental Guidance[M]. Beijing: Higher Education Press, 2006: 1-231. ]
[23] Fang Y J, Xiong L Z. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences, 2015, 72(4): 673-689.
[24] Hu H, Xiong L. Genetic engineering and breeding of drought-resistant crops[J]. Annual Review of Plant Biology, 2014, 65: 715-741.
[25] 熊仕发, 吴立文, 陈益存, 等. 不同种源白栎幼苗叶片对干旱胁迫的响应及抗旱性评价[J]. 生态学杂志, 2020, 39(12): 3924-3933.
  [Xiong Shifa, Wu Liwen, Chen Yicun, et al. Response of leaves of Quercus fabri seedlings from different provenances to drought stress and drought resistance evaluation[J]. Chinese Journal of Ecology, 2020, 39(12): 3924-3933. ]
[26] 秦洁, 司建华, 贾冰, 等. 巴丹吉林沙漠典型植物水势与导水率的时空变化[J]. 生态学杂志, 2021, 40(6): 1629-1638.
  [Qin Jie, Si Jianhua, Jia Bing, et al. Temporal and spatial variations of water potential and hydraulic conductivity of typical plants species in Badain Jaran Desert[J]. Chinese Journal of Ecology, 2021, 40(6): 1629-1638. ]
[27] 陈斐, 闫霜, 王鹤龄, 等. 不同水分胁迫下的春小麦叶片气体交换参数和水分利用效率研究[J]. 干旱区研究, 2021, 38(3): 821-832.
  [Chen Fei, Yan Shuang, Wang Heling, et al. Study on gas exchange parameters and water use efficiency of spring wheat leaves under different water stresses[J]. Arid Zone Research, 2021, 38(3): 821-832. ]
[28] 魏媛, 喻理飞. 西南喀斯特地区构树苗木对土壤干旱胁迫的生理响应[J]. 水土保持研究, 2010, 17(2): 164-167.
  [Wei Yuan, Yu Lifei. Physiological responses of Broussonetia papyrifera seedlings to soil drought stress in southwest Karst Region[J]. Research of Soil and Water Conservation, 2010, 17(2): 164-167. ]
[29] 周英, 吴沿友, 李海涛, 等. 土壤逐渐干旱条件下玉米和构树光合特性的变化[J]. 地球与环境, 2024, 52(3): 365-374.
  [Zhou Ying, Wu Yanyou, Li Haitao, et al. Changes in photosynthetic characteristics of Zea mays L. and Broussonetia papyrifera (Linn.). ex Ven. under progressive soil drought[J]. Earth and Environment, 2024, 52(3): 365-374. ]
[30] Liang G T, Bu J W, Zhang S Y, et al. Effects of drought stress on the photosynthetic physiological parameters of Populus×euramericanaNeva”[J]. Journal of Forestry Research, 2019, 30(2): 409-416.
[31] 付士磊, 周永斌, 何兴元, 等. 干旱胁迫对杨树光合生理指标的影响[J]. 应用生态学报, 2006, 17(11): 2016-2019.
  [Fu Shilei, Zhou Yongbin, He Xingyuan, et al. Effects of drought stress on photosynthetic physiology of Populus pseudo-simonii[J]. Chinese Journal of Applied Ecology, 2006, 17(11): 2016-2019. ]
[32] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1): 317-345.
[33] 冯延芝, 赵阳, 王保平, 等. 干旱复水对楸叶泡桐幼苗光合和叶绿素荧光的影响[J]. 中南林业科技大学学报, 2020, 40(4): 1-8.
  [Feng Yanzhi, Zhao Yang, Wang Baoping, et al. Effects of drought and rewatering on photosynthesis and chlorophyll fluorescence of Paulownia catalpifolia seedlings[J]. Journal of Central South University of Forestry & Technology, 2020, 40(4): 1-8. ]
[34] 高琦, 刘亚敏, 刘玉民, 等. 外源调节物质对干旱胁迫红椿苗木形态及光合生理的影响[J]. 西北农林科技大学学报(自然科学版), 2024, 52(7): 53-63.
  [Gao Qi, Liu Yamin, Liu Yumin, et al. Effects of exogenous substances on morphology and photosynthetic physiology of Toona ciliata seedlings under drought stress[J]. Journal of Northwest A & F University (Natural Science Edition), 2024, 52(7): 53-63. ]
[35] 杨肖华, 郭圣茂, 冯美玲, 等. 干旱胁迫及复水对射干光合作用和叶绿素荧光特性的影响[J]. 江西农业大学学报, 2018, 40(3): 525-532.
  [Yang Xiaohua, Guo Shengmao, Feng Meiling, et al. Effects of drought stress and rewatering on the characteristics of photosynthesis and chlorophyll fluorescence of blackberry lily[J]. Journal of Jiangxi Agricultural University, 2018, 40(3): 525-532. ]
[36] 程爽, Ulaanduu Namuun, 李卓琳, 等. 植物光系统II (PSII)应答非生物胁迫机理研究进展[J]. 生物技术通报, 2023, 39(12): 33-42.
  [Cheng Shuang, Ulaanduu Namuun, Li Zhuolin, et al. Research progress on the mechanism of plant photosystem II (PSII) in response to abiotic stress[J]. Biotechnology Bulletin, 2023, 39(12): 33-42. ]
[37] 冯蕊, 周琪, 吴令上, 等. PEG 6000模拟干旱胁迫对铁皮石斛幼苗生理和叶绿素荧光特性的影响[J]. 浙江农林大学学报, 2024, 41(1): 132-144.
  [Feng Rui, Zhou Qi, Wu Lingshang, et al. Effect of PEG 6000 simulated drought stress on physiological and chlorophyll fluorescence characteristics of Dendrobium officinale seedlings[J]. Journal of Zhejiang A & F University, 2024, 41(1): 132-144. ]
[38] 李泽, 谭晓风, 卢锟, 等. 干旱胁迫对两种油桐幼苗生长、气体交换及叶绿素荧光参数的影响[J]. 生态学报, 2017, 37(5): 1515-1524.
  [Li Ze, Tan Xiaofeng, Lu Kun, et al. Influence of drought stress on growth, leaf gas exchange, and chlorophyll fluorescence in two varieties of tung seedlings[J]. Chinese Journal of Ecology, 2017, 37(5): 1515-1524. ]
[39] 刁珊, Nami Kana, 纪薇, 等. 11个鲜食葡萄品种幼苗抗旱性研究及抗旱指标筛选[J]. 果树学报, 2023, 40(9): 1871-1884.
  [Diao Shan, Nami Kana, Ji Wei, et al. Drought resistance of seedlings of 11 table grape varieties and screening of drought resistance indicators[J]. Journal of Fruit Science, 2023, 40(9): 1871-1884. ]
[40] 李秋静, 卢广超, 薛立, 等. 臭氧与干旱胁迫对华南地区3种绿化树种荧光生理的影响[J]. 华南农业大学学报, 2015, 36(1): 91-95.
  [Li Qiujing, Lu Guangchao, Xue Li, et al. Effects of ozone and drought on fluorescence physiology of seedlings of three afforestation tree species in south China[J]. Journal of South China Agricultural University, 2015, 36(1): 91-95. ]
[41] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930.
[42] Els K, Darin P, Jaco V, et al. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept[J]. Plant, Cell Environment, 2013, 36(7): 1242-1255.
[43] Sperdouli I, Moustakas M. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress[J]. Journal of Plant Physiology, 2012, 169(6): 577-585.
[44] 茶晓飞, 董琼, 段华超, 等. 干旱下白枪杆幼苗生物量及生理活性物质对钙添加的适应性调节[J]. 西北林学院学报, 2023, 38(3): 10-17.
  [Cha Xiaofei, Dong Qiong, Duan Huachao, et al. Adaptive regulation of biomass and physiologically active substances in response to calcium addition in Fraxinus malacophylla seedlings under drought[J]. Journal of Northwest Forestry University, 2023, 38(3): 10-17. ]
[45] 张天泽, 孟凡君, 尹大川. 干旱胁迫下外生菌根菌对山新杨幼苗生物量、渗透调节物质和抗氧化酶的影响[J]. 菌物学报, 2023, 42(7): 1558-1574.
  [Zhang Tianze, Meng Fanjun, Yin Dachuan. Effects of ectomycorrhizal fungi on biomass, osmotic substances and antioxidant enzymes of Populus davidiana×P. bolleana seedlings under drought stress[J]. Mycosystema, 2023, 42(7): 1558-1574. ]
[46] Laxa M, Liebthal M, Telman W, et al. The role of the plant antioxidant system in drought tolerance[J]. Antioxidants, 2019, 8(4): 94.
[47] 邓平, 吴敏, 林丁, 等. 干旱-复水对桂西北喀斯特地区青冈栎幼苗叶片光合能力、叶绿素荧光和显微结构的影响[J]. 西北植物学报, 2024, 44(1): 63-76.
  [Deng Ping, Wu Min, Lin Ding, et al. Effects of drought-rehydration on photosynthetic capacity, chlorophyll fluorescence, and microstructure of Cyclobalanopsis glauca seedling leaves in Karst area of northwest Guangxi[J]. Northwest Chinese Journal of Botany, 2024, 44(1): 63-76. ]
[48] Dan L, Guo H L, Yan L P, et al. Physiological, photosynthetic and stomatal ultrastructural responses of Quercus acutissima seedlings to drought stress and rewatering[J]. Forests, 2023, 15(1): 71.
[49] Xiong S F, Wang Y D, Chen Y C, et al. Effects of drought stress and rehydration on physiological and biochemical properties of four oak species in China[J]. Plants, 2022, 11(5): 679.
[50] 赵英, 赵凯丽, 朱宇林, 等. 干旱胁迫与复水对喀斯特地区红背山麻杆生长及生理特性的影响[J]. 西北农林科技大学学报(自然科学版), 2023, 51(8): 59-68.
  [Zhao Ying, Zhao Kaili, Zhu Yulin, et al. Effects of drought stress and re-watering on growth and physiological characteristics of Alchornea trewioides in Karst areas[J]. Journal of Northwest A & F University (Natural Science Edition), 2023, 51(8): 59-68. ]
[51] 金思雨, 彭祚登. 刺槐苗木碳水生理参数对长期干旱及复水的响应变化[J]. 北京林业大学学报, 2023, 45(8): 43-56.
  [Jin Siyu, Peng Zuodeng. Changes in response of carbon and water physiological parameters of Robinia pseudoacacia seedlings to long-term drought and rehydration[J]. Journal of Beijing Forestry University, 2023, 45(8): 43-56. ]
[52] 李春燕, 王进鑫, 薛设. 干旱及复水对侧柏幼苗叶片抗氧化酶活性的影响[J]. 西北林学院学报, 2015, 30(2): 33-37.
  [Li Chunyan, Wang Jinxin, Xue She. Effects of drought and rewatering on activity of protect enzymes in the leaves of Platycladus orientalis seedlings[J]. Journal of Northwest Forestry University, 2015, 30(2): 33-37. ]
Outlines

/