Plant Ecology

Effects of water and salt stress on the physiological growth characteristics of Atriplex canescens

  • ZHANG Lingxue ,
  • LI Xiaofeng ,
  • QU Jun ,
  • MA Meiyu ,
  • ZHANG Jianbin ,
  • LI Yaoming
Expand
  • 1. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
    4. Barkol Forestry and Steppe Workstation, Barkol 839200, Xingjiang, China
    5. Xinjiang Zhundong Economic and Technological Development Zone Water Affairs Bureau, Changji 831100, Xinjiang, China

Received date: 2024-03-19

  Revised date: 2024-05-20

  Online published: 2024-10-14

Abstract

In arid regions, soil salinity and moisture are the major factors that limit plant growth and development. Through the course of evolutionary processes, plants have evolved a myriad of physiological and ecological adaptation mechanisms to mitigate the detrimental effects of such stressors. Considering the prevalent aridity and medium soil salinity characteristic in Xinjiang, investigating plant adaptive strategies under drought and salinity stress conditions presents significant potential for advancing ecological restoration efforts within arid landscapes. Atriplex canescens, a perennial semi-evergreen shrub belonging to the Quinoa family, naturally thrives in the semi-arid regions of the Midwestern Plateau in the United States. It exhibits remarkable resilience to arid and saline environments. This study explored the physiological and growth responses of A. canescens seedlings to salt (low salt: 6.4 g·kg-1, medium salt: 13.3 g·kg-1) and water (W1: 3% soil moisture content; W2: 6% soil moisture content; W3: 9% soil moisture content; W4: 12% soil moisture content) stress using pot experiments. Results showed that (1) salt and water stress exerted a significant effect on the physiological and growth indicators of A. canescens. (2) Under different salt treatments, the levels of antioxidant enzymes (superoxide dismutase and peroxidase) and osmotic adjustment substances (starch, soluble sugars, and proline) significantly increased in W1 treatment compared with those in W4 treatment; in particular, proline and soluble sugars were more sensitive. A. canescens exhibited increased root-to-shoot ratio, specific root length, specific root area, and volume with increasing drought severity, whereas root, stem, and leaf biomass showed the opposite trend. A. canescens exhibited robust regulatory capabilities to tolerate drought stress through improvements in osmoregulation, antioxidant mechanisms, water absorption efficiency, and regulation of resource allocation. (3) The relative leaf water content significantly decreased in W1 treatment compared with that in W2 treatment. Moreover, the levels of chlorophyll a and chlorophyll b decreased in W1 treatment compared with those in W4 treatment across all salt treatments, with the exception of chlorophyll b in the medium salt treatment, where the decrease was not statistically significant. With an increase in water stress, the photosynthetic and water-retaining capabilities of A. canescens gradually weakened. (4) Correlation and principal component analyses indicated that osmotic adjustment substances and morphological indicators of A. canescens responded together to adapt to water and salt stress, explaining 31.92% of the variation in physiological and growth indicators. Thus, A. canescens demonstrates medium salt tolerance and strong physiological and ecological regulatory characteristics. Altogether, A. canescens exhibits robust salt tolerance and profound physiological and ecological regulatory traits, rendering it a viable candidate for restoration initiatives of desert vegetation.

Cite this article

ZHANG Lingxue , LI Xiaofeng , QU Jun , MA Meiyu , ZHANG Jianbin , LI Yaoming . Effects of water and salt stress on the physiological growth characteristics of Atriplex canescens[J]. Arid Zone Research, 2024 , 41(10) : 1767 -1777 . DOI: 10.13866/j.azr.2024.10.14

References

[1] 刘丽娟, 李小玉. 干旱区土壤盐分积累过程研究进展[J]. 生态学杂志, 2019, 38(3): 891-898.
  [Liu Lijuan, Li Xiaoyu. Progress in the study of soil salt accumulation in arid region[J]. Chinese Journal of Ecology 2019, 38(3): 891-898.]
[2] Yan K, Shao H, Shao C, et al. Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone[J]. Acta Physiologiae Plantarum, 2013, 35(10): 2867-2878.
[3] Tang X, Mu X, Shao H, et al. Global plant-responding mechanisms to salt stress: Physiological and molecular levels and implications in biotechnology[J]. Critial Reviews in Biotechnology, 2015, 35(4): 425-437.
[4] Kalaji H M, Jajoo A, Oukarroum A, et al. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J]. Acta Physiologiae Plantarum, 2016, 38(4): 102.
[5] van Dijk G, Smolders A J P, Loeb R, et al. Salinization of coastal freshwater wetlands; effects of constant versus fluctuating salinity on sediment biogeochemistry[J]. Biogeochemistry, 2015, 126(1): 71-84.
[6] 杨彪生, 单立山, 马静, 等. 红砂幼苗生长及根系形态特征对干旱-复水的响应[J]. 干旱区研究, 2021, 38(2): 469-478.
  [Yang Biaosheng, Shan Lishan, Ma Jing, et al. Response of growth and root morphological characteristics of Reaumuria soongorica seedlings to drought-rehydration[J]. Arid Zone Research, 2021, 38(2): 469-478.]
[7] 徐梦琦, 高艳菊, 张志浩, 等. 骆驼刺叶片和根系主要功能性状对水分胁迫的适应[J]. 草业科学, 2021, 38(8): 1559-1669.
  [Xu Mengqi, Gao Yanju, Zhang Zhihao, et al. Adaptation of the main functional trait of Alhagi sparsifolia leaves and roots to soil water stress[J]. Pratacultural Science, 2021, 38(8): 1559-1669.]
[8] 颜巧芳, 单立山, 解婷婷, 等. 珍珠柴幼苗叶片和根系形态特征对干旱胁迫的响应[J]. 干旱区研究, 2024, 41(1): 92-103.
  [Yan Qiaofang, Shan Lishan, Xie Tingting, et al. Morphological characteristics of the leaves and roots of Caroxylon passerinum seedlings in response to drought-induced stress[J]. Arid Zone Research, 2024, 41(1): 92-103.]
[9] 钱玥, 李思源, 饶良懿. 盐碱胁迫对菊芋渗透调节及抗氧化酶系统的影响[J]. 干旱区研究, 2023, 40(9): 1465-1471.
  [Qian Yue, Li Siyuan, Rao Liangyi. Effects of saline-alkali stress on organic osmoregulatory substances and antioxidant enzyme systems of Helianthus tuberosus[J]. Arid Zone Research, 2023, 40(9): 1465-1471.]
[10] 吴永波, 叶波. 高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响[J]. 生态学报, 2016, 36(2): 403-410.
  [Wu Yongbo, Ye Bo. Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism of Broussonetia papyrifera seedlings[J]. Acta Ecologica Sinica, 2016, 36(2): 403-410.]
[11] Usman M, Bokhari S A M, Fatima B, et al. Drought stress mitigating morphological, physiological, biochemical, and molecular responses of guava (Psidium guajava L.) cultivars[J]. Frontiers in Plant Science, 2022, 13: 1-16.
[12] 牛欣益, 马瑞. 红砂幼苗叶片生理特性对干旱胁迫的响应[J]. 草业科学, 2023, 40(10): 2483-2492.
  [Niu Xinyi, Ma Rui. Effects of drought stress on leaf physiology of Reaumuria soongorica seedlings during the growing season[J]. Pratacultural Science, 2023, 40(10): 2483-2492.]
[13] Abdalla M, Ahmed M A, Cai G C, et al. Coupled effects of soil drying and salinity on soil-plant hydraulics[J]. Plant Physiology, 2022, 190(2): 1228-1241.
[14] Fonta J E, Giri J, Vejchasarn P, et al. Spatiotemporal responses of rice root architecture and anatomy to drought[J]. Plant and Soil, 2022, 479(1-2): 443-464.
[15] 赵文武, 赵鑫, 谢文辉, 等. 干旱胁迫下白刺花幼苗根系生长和生理特性的响应[J]. 草地学报, 2023, 31(1): 120-129.
  [Zhao Wenwu, Zhao Xin, Xie Wenhui, et al. Response of root growth and development and physiological characteristics of Sophora davidii under drought stress[J]. Acta Agrestia Sinica, 2023, 31(1): 120-129.]
[16] 王帆, 何奇瑾, 周广胜. 夏玉米三叶期持续干旱下不同叶位叶片含水量变化及其与光合作用的关系[J]. 生态学报, 2019, 39(1): 254-264.
  [Wang Fan, He Qijin, Zhou Guangsheng. Leaf water content at different positions and its relationship with photosynthesis when consecutive drought treatments are applied to summer maize from the 3-leaf stage[J]. Acta Ecologica Sinica, 2019, 39(1): 254-264.]
[17] 王旭明, 麦绮君, 周鸿凯, 等. 盐胁迫对4个水稻种质抗逆性生理的影响[J]. 热带亚热带植物学报, 2019, 27(2): 149-156.
  [Wang Xuming, Mai Qijun, Zhou Hongkai, et al. Effects of salt stress on resistance physiology of four rice germplasms[J]. Journal of Tropical and Subtropical Botany, 2019, 27(2): 149-156.]
[18] 王佳敏, 宋海燕, 陈金艺, 等. 多年生黑麦草对干旱胁迫下喀斯特异质生境的生长响应策略[J]. 生态学报, 2020, 40(13): 4566-4572.
  [Wang Jiamin, Song Haiyan, Chen Jinyi, et al. Response strategies of Lolium perenne L. to karst heterogeneous habitats under drought stress[J]. Acta Ecologica Sinica 2020, 40(13): 4566-4572.]
[19] 刘可佳, 何念鹏, 侯继华. 中国温带典型森林植物比叶面积的空间格局及其影响因素[J]. 生态学报, 2022, 42(3): 872-883.
  [Liu Kejia, He Nianpeng, Hou Jihua. Spatial patterns and influencing factors of specific leaf area in typical temperate forests[J]. Acta Ecologica Sinica, 2022, 42(3): 872-883.]
[20] Wasaya A, Zhang X Y, Fang Q, et al. Root phenotyping for drought tolerance: A review[J]. Agriculture-Basel, 2018, 8(11): 1-19.
[21] Brown E P G J. Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil[J]. American Journal of Botany, 1998, 85(1): 10-16.
[22] Hao G Y, Lucero M E, Sanderson S C, et al. Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in Atriplex canescens (Chenopodiaceae)[J]. New Phytologist, 2012, 197(3): 970-978.
[23] Pan Y Q, Guo H, Wang S M, et al. The photosynthesis, Na+/K+homeostasis and osmotic adjustment of Atriplex canescens in response to salinity[J]. Frontiers in Plant Science, 2016, 7: 1-14.
[24] Guo H, Cui Y N, Pan Y Q, et al. Sodium chloride facilitates the secretohalophyte Atriplex canescens adaptation to drought stress[J]. Plant Physiology Biochemistry, 2020, 150: 99-108.
[25] 张震中, 张潭, 李倩, 等. 四翅滨藜生理生化特征对盐胁迫的响应[J]. 西北植物学报, 2017, 37(12): 2435-2443.
  [Zhang Zhenzhong, Zhang Tan, Li Qian, et al. Physiological and biochemical responses of Atriplex canescens seedlings to salt stress[J]. Acta Botanica Boreali-Occidential Sinica, 2017, 37(12): 2435-2443.]
[26] 柴薇薇. 张掖市四翅滨藜引种抗旱适应性研究[D]. 兰州: 甘肃农业大学, 2007.
  [Cai Weiwei. Study on Introductions and Drought Resistance and Adaptability of Atriplex canescens in Zhangye City[D]. Lanzhou: Gansu Agricultural University, 2007.]
[27] 康才周. 四翅滨藜在不同土壤水分胁迫下的生理生态响应[D]. 兰州: 甘肃农业大学, 2006.
  [Kang Caizhou. Eco-Physiological Responses of Atriplex canescens under Different Soil Water Stresses[D]. Lanzhou: Gansu Agricultural University, 2006.]
[28] 王新英, 史军辉, 刘茂秀, 等. 四翅滨藜主要渗透调节物质对NaCl胁迫累积的响应[J]. 干旱区研究, 2012, 29(4): 621-627.
  [Wang Xinying, Shi Junhui, Liu Maoxiu, et al. Response of main osmotic adjustment substances to NaCl stress accumulation in Atriplex canescens[J]. Arid Zone Research, 2012, 29(4): 621-627.]
[29] 郭欢, 潘雅清, 包爱科. NaCl在四翅滨藜适应渗透胁迫中的作用[J]. 草业学报, 2020, 29(7): 112-121.
  [Guo Huan, Pan Yaqing, Bao Aike. Effect of NaCl on the adaption of Atriplex canescens under osmotic stress[J]. Acta Prataculturae Sinica, 2020, 29(7): 112-121.]
[30] 罗家雄. 新疆垦区盐碱地改良[M]. 北京: 水利电力出版社, 1985: 35.
  [Luo Jiaxiong. Improvement of Saline and Alkaline Land in Xinjiang Reclamation Area[M]. Beijing: Water Conservancy and Electric Power Press, 1985: 35.]
[31] 李祥东. 西北干旱区土壤水分时空变异特征及其影响因素研究[D]. 北京: 中国科学院大学, 2019.
  [Li Xiangdong. Spatial-temporal Variability of Soil Moisture and Influencing Factors in Northwest Arid Area of China[D]. Beijing: University of Chinese Academy of Sciences, 2019.]
[32] 张潭. 柴达木地区几个主要树种的抗旱耐盐碱生理生化特征研究[D]. 北京: 北京林业大学, 2019.
  [Zhang Tan. Studies on Drought and Salinity Resistant Physiology and Biochemistry Characteristics of Main Tree Species in Qaidam Basin[D]. Beijing: Beijing Forestry University, 2019.]
[33] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
  [Li Hesheng. Principles and Techniques of Plant Physiology and Biochemistry Experiments[M]. Beijing: Higher Education Press, 2000.]
[34] 刘燕, 张凌楠, 刘晓宏, 等. 干旱胁迫植物个体生理响应及其生态模型预测研究进展[J]. 生态学报, 2023, 43(24): 10042-10053.
  [Liu Yan, Zhang Lingnan, Liu Xiaohong, et al. Research progress from individual plant physiological response to ecological model prediction under drought stress[J]. Acta Ecologica Sinica, 2023, 43(24): 10042-10053.]
[35] 楚乐乐, 罗成科, 田蕾, 等. 植物对碱胁迫适应机制的研究进展[J]. 植物遗传资源学报, 2019, 20(4): 836-844.
  [Chu Lele, Luo Chengke, Tian Lei, et al. Research advance in plants’adaptation to alkali stress[J]. Journal of Plant Genetic Resources, 2019, 20(4): 836-844.]
[36] Fang Y J, Xiong L Z. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences, 2015, 72(4): 673-689.
[37] 梁青兰, 韩友吉, 乔艳辉, 等. 干旱胁迫对黑杨派无性系生长及生理特性的影响[J]. 北京林业大学学报, 2023, 45(10): 81-89.
  [Liang Qinglan, Han Youji, Qiao Yanhui, et al. Effects of drought stress on the growth and physiological characteristics of Sect. Aigeiros clones[J]. Journal of Beijing Forestry University 2023, 45(10): 81-89.]
[38] 张天泽, 孟凡君, 尹大川. 干旱胁迫下外生菌根菌对山新杨幼苗生物量,渗透调节物质和抗氧化酶的影响[J]. 菌物学报, 2023, 42(7): 1558-1574.
  [Zhang Tianze, Meng Fanjun, Yin Dachuan. Effects of ectomycorrhizal fungi on biomass, osmoregulatory substances and antioxidant enzymes of Populus davidiana×P. bolleana seedlings under drought stress[J]. Mycology, 2023, 42(7): 1558-1574.]
[39] Zhang S H, Xu X F, Sun Y M, et al. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress[J]. Journal of Integrative Agriculture, 2018, 17(2): 336-347.
[40] 柯梅, 侯钰荣, 魏鹏, 等. 干旱胁迫下心叶驼绒藜生理响应特性[J]. 草业科学, 2023, 40(5): 1349-1357.
  [Ke Mei, Hou Yurong, Wei Peng, et al. Physiological responses of Krascheninnikovia ewersmannia under drought stress[J]. Pratacultural Science, 2023, 40(5): 1349-1357.]
[41] 贾鑫, 孙窗舒, 李光跃, 等. 干旱胁迫对蒙古黄芪生长和生理生化指标及其黄芪甲苷积累的影响[J]. 西北植物学报, 2018, 38(3): 501-509.
  [Jia Xin, Sun Chuangshu, Li Guangyue, et al. Effect of drought stress on the growth and physiological characteristics and the accumulation of astragaloside IV secondary metabolites of Astragalus membranaceus (Fisch.) var. mongholicus (Bge.) Hsiao[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(3): 501-509.]
[42] 麦格皮热提古丽·达吾提, 王海鸥, 陈晓楠, 等. 干旱胁迫下丛枝菌根真菌对疏叶骆驼刺和多枝柽柳生长及生理的影响[J]. 西北植物学报, 2023, 43(11): 1897-1909.
  [Maigepiretiguli Dawuti, Wang Hai’ou, Chen Xiaonan, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological characteristics of Alhagi sparsifolia and Tamarix ramosissima under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(11): 1897-1909.]
[43] Bao G Z, Tang W Y, An Q R, et al. Physiological effects of the combined stresses of freezing-thawing, acid precipitation and deicing salt on alfalfa seedlings[J]. BMC Plant Biology, 2020, 20(1): 1-9.
[44] Singh M, Kumar J, Singh S, et al. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3): 407-426.
[45] Sánchez-Rodríguez E, Rubio-Wilhelmi M, Cervilla L M, et al. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants[J]. Plant Science, 2010, 178(1): 30-40.
[46] 汤东, 程平, 杨建军, 等. 天山北坡山前植物对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6): 1683-1694.
  [Tang Dong, Cheng Ping, Yang Jianjun, et al. Physiological responses of plants to drought stress in the northern piedmont, Tianshan Mountains[J]. Arid Zone Research, 2021, 38(6): 1683-1694.]
[47] Henry H A L, Abedi M, Alados C L, et al. Increased soil frost versus summer drought as drivers of plant biomass responses to reduced precipitation: Results from a globally coordinated field experiment[J]. Ecosystems, 2018, 21(7): 1432-1444.
[48] 韩喆, 张永强, 张浩浩, 等. 干旱胁迫对伊犁绢蒿幼苗生长及叶片解剖结构的影响[J]. 草地学报, 2024, 32(1): 105-112.
  [Han Zhe, Zhang Yongqiang, Zhang Haohao, et al. Effects of drought stresson growthand leaf anatomical structure of seriphidium transiliense seedlings[J]. Acta Agrestia Sinica, 2024, 32(1): 105-112.]
[49] 朱铁霞, 高阳, 高凯, 等. 干旱胁迫下菊芋各器官生物量及物质分配规律[J]. 生态学报, 2019, 39(21): 8021-8026.
  [Zhu Tiexia, Gao Yang, Gao Kai, et al. Organ biomass and resource allocation in response to drought stress in Jerusalem artichoke[J]. Acta Ecologica Sinica, 2019, 39(21): 8021-8026.]
[50] 李斐, 孙明伟, 钟尚志, 等. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87.
  [Li Fei, Sun Mingwei, Zhong Shangzhi, et al. Photosynthetic physiology and growth adaptation of herbages with different photosynthetic pathways in response to drought-rehydration[J]. Chinese Journal of Plant Ecologywas, 2022, 46(1): 74-87.]
[51] Yan S Y, Weng B S, Jing L S, et al. Adaptive pathway of summer maize under drought stress: Transformation of root morphology and water absorption law[J]. Frontiers in Earth Science, 2022, 10: 1-17.
[52] Dong T F, Duan B L, Zhang S, et al. Growth, biomass allocation and photosynthetic responses are related to intensity of root severance and soil moisture conditions in the plantation tree Cunninghamia lanceolata[J]. Tree Physiology, 2016, 36(7): 807-817.
[53] 张东, 刘艳, 张晗, 等. 甘草叶片渗透调节物质及蔗糖代谢相关酶对干旱胁迫的响应特性[J]. 西北植物学报, 2020, 40(5): 819-827.
  [Zhang Dong, Liu Yan, Zhang Han, et al. Response of osmotic regulators and sucrose metabolization-related enzymes to drought stress in Glycyrrhiza uralensis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(5): 819-827.]
Outlines

/