Land and Water Resources

Spatial-temporal variation characteristics and attribution analysis of potential evapotranspiration in the Tabu River Basin

  • WANG Jiashuang ,
  • GAO Xiaoyu ,
  • LI Weiping ,
  • CHI Zhaonan ,
  • ZHANG Jiapeng ,
  • WU Yixuan
Expand
  • College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China

Received date: 2024-06-04

  Revised date: 2024-08-09

  Online published: 2024-09-25

Abstract

Potential evapotranspiration (ET0) has an important impact on the hydrological cycle of the Tabu River Basin. Temporal and spatial variations in ET0 values in response to meteorological factors can inform water resource management in basins. For this study, daily meteorological data were collected from 7 meteorological stations in the Tabu River Basin and surrounding areas from 1981 to 2023. The Penman-Monteith (P-M) formula was used to estimate the ET0 to analyze temporal and spatial distribution patterns. The Beven sensitivity formula was used to calculate the sensitivity coefficient of seasonal and annual changes in ET0 to key meteorological factors and to explore trends in the sensitivity coefficient. Quantitative analysis was performed to determine the dominant factors affecting ET0 changes based on the relative changes in meteorological factors over time. The annual ET0 in the Tabu River Basin increased by 4.09 mm·(10a)-1, with a multiyear average of 1024.51 mm. Spatially, the annual ET0 was lowest in the southeast and highest in the northwest. The absolute values of the sensitivity coefficient of annual ET0 to various meteorological factors in decreasing order are relative humidity>maximum temperature>wind speed>sunshine hours>minimum temperature. The coefficients for relative humidity were highest for spring, autumn, and winter, while temperature had the highest coefficient for summer. The main factors affecting the change in annual ET0 were maximum temperature and wind speed, with contributions of 4.86% and-4.37%, respectively. On a seasonal scale, the main factors affecting ET0 changes in spring, summer, autumn, and winter were maximum temperature, wind speed, and relative humidity. An increase in maximum temperature and a decrease in relative humidity in the basin are the main reasons for the rise in ET0.

Cite this article

WANG Jiashuang , GAO Xiaoyu , LI Weiping , CHI Zhaonan , ZHANG Jiapeng , WU Yixuan . Spatial-temporal variation characteristics and attribution analysis of potential evapotranspiration in the Tabu River Basin[J]. Arid Zone Research, 2024 , 41(9) : 1538 -1547 . DOI: 10.13866/j.azr.2024.09.10

References

[1] Gong L, Xu C, Chen D, et al. Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin[J]. Journal of Hydrology, 2006, 329(3-4): 620-629.
[2] 曹永强, 刘明阳, 李元菲, 等. 不同潜在蒸散发估算方法在辽宁省的适用性分析[J]. 资源科学, 2019, 41(10): 1780-1790.
  [Cao Yongqiang, Liu Mingyang, Li Yuanfei, et al. Applicability of six potential evapotranspiration estimation methods in Liaoning Province[J]. Resources Science, 2019, 41(10): 1780-1790.]
[3] 鞠琴, 高慧滨, 王国庆, 等. 基于能量平衡原理的潜在蒸散发模型构建[J]. 水科学进展, 2022, 33(5): 794-804.
  [Ju Qin, Gao Huibin, Wang Guoqing, et al. Modeling potential evapotranspiration based on energy balance[J]. Advances in Water Science, 2022, 33(5): 794-804.]
[4] 刘佩贵, 夏艳, 尚熳廷. 不同质地裸土潜水蒸发估算方法[J]. 农业工程学报, 2020, 36(1): 148-153.
  [Liu Peigui, Xia Yan, Shang Manting. Estimation methods of phreatic evaporation for different textures in bare soil area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 148-153.]
[5] 陈少丹, 张利平, 田祥勇, 等. 基于P-M模型和MOD16数据的长江中下游潜在蒸散量比较分析[J]. 武汉大学学报(工学版), 2019, 52(4): 283-289, 296.
  [Chen Shaodan, Zhang Liping, Tian Xiangyong, et al. Comparative analysis of potential evapotranspiration estimation between Penman-Monteith model and MOD16 data in Middle and Lower Yangtze River Basin[J]. Engineering Journal of Wuhan University, 2019, 52(4): 283-289, 296.]
[6] 伍海, 夏军, 赵玲玲, 等. 变化环境下12种潜在蒸散发估算方法在不同干湿区的适用性[J]. 南水北调与水利科技(中英文), 2021, 19(1): 1-11.
  [Wu Hai, Xia Jun, Zhao Lingling, et al. Application of 12 potential evapotranspiration estimation methods under changing environments in different arid and humid regions[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(1): 1-11.]
[7] 孙福宝. 基于Budyko水热耦合平衡假设的流域蒸散发研究[D]. 北京: 清华大学, 2007.
  [Sun Fubao. Study on Watershed Evapotranspiration Based on the Budyko Hypothesis[D]. Beijing: Tsinghua University, 2007.]
[8] 丛振涛, 倪广恒, 杨大文, 等. “蒸发悖论”在中国的规律分析[J]. 水科学进展, 2008, 19(2): 147-152.
  [Cong Zhentao, Ni Guangheng, Yang Dawen, et al. Evaporation paradox in China[J]. Advances in Water Science, 2008, 19(2): 147-152.]
[9] Michael L R, Graham D F. The cause of decreased pan evaporation over the past 50 years[J]. Science, 2002, 298(15): 1410-1411.
[10] 杨林山, 李常斌, 王帅兵, 等. 洮河流域潜在蒸散发的气象敏感性分析[J]. 农业工程学报, 2014, 30(11): 102-109.
  [Yang Linshan, Li Changbin, Wang Shuaibing, et al. Sensitive analysis of potential evapotranspiration to key climatic factors in Taohe River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11): 102-109.]
[11] 郭雯雯, 黄生志, 赵静, 等. 渭河流域潜在蒸散发时空演变与驱动力量化分析[J]. 农业工程学报, 2021, 37(3): 81-89.
  [Guo Wenwen, Huang Shengzhi, Zhao Jing, et al. Spatio-temporal dynamics and driving forces of potential evapotranspiration in the Wei River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(3): 81-89.]
[12] 毕彦杰, 赵晶, 赵勇, 等. 京津冀地区潜在蒸散量时空演变特征及归因分析[J]. 农业工程学报, 2020, 36(5): 130-140.
  [Bi Yanjie, Zhao Jing, Zhao Yong, et al. Spatial-temporal variation characteristics and attribution analysis of potential evapotranspiration in Beijing-Tianjin-Hebei Region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 130-140.]
[13] 付昌昌, 刘聪, 李向全. 可可西里盐湖流域潜在蒸散发演变规律及成因分析[J]. 水文, 2022, 42(6): 25-30.
  [Fu Changchang, Liu Cong, Li Xiangquan. Research on evolution and causes for the potential evapotranspiration of the Yanhu Lake Basin in Hoh Xil region[J]. Journal of China Hydrology, 2022, 42(6): 25-30.]
[14] 李晨, 李王成, 董亚萍, 等. 宁夏地区潜在蒸散发变化特征及成因分析[J]. 排灌机械工程学报, 2021, 39(2): 186-192.
  [Li Chen, Li Wangcheng, Dong Yaping, et al. Characteristics and causes of potential evapotranspiration in Ningxia region[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(2): 186-192.]
[15] 谢平, 龙怀玉, 张杨珠, 等. 云南省四季潜在蒸散量时空演变的主导气象因子分析[J]. 水土保持研究, 2017, 24(2): 184-193.
  [Xie Ping, Long Huaiyu, Zhang Yangzhu, et al. Dominant meteorological factors of spatiotemporal variations of seasonal potential evapotranspiration in Yunnan Province during the period from 1981 to 2011[J]. Research of Soil and Water Conservation, 2017, 24(2): 184-193.]
[16] Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration:Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper No. 56[M]. Italy: Food and Agriculture Organization of the United Nations, 1998.
[17] 胡广录, 陶虎, 焦娇, 等. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023, 40(9): 1414-1424.
  [Hu Guanglu, Tao Hu, Jiao Jiao, et al. Runoff trend and attribution analysis of the Zhengyi Gorge in the middle reaches of the Heihe River[J]. Arid Zone Research, 2023, 40(9): 1414-1424.]
[18] 季宗虎, 孙栋元, 牛最荣, 等. 疏勒河流域降水变化特征研究[J]. 干旱区研究, 2023, 40(10): 1583-1594.
  [Ji Zonghu, Sun Dongyuan, Niu Zuirong, et al. Characteristics of precipitation changes in the Shule River Basin[J]. Arid Zone Research, 2023, 40(10): 1583-1594.]
[19] Beven K. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates[J]. Journal of Hydrology, 1979, 44(3): 169-190.
[20] Yin Y H, Wu S H, Dai E F. Determining factors in potential evapotranspiration changes over China in the period 1971-2008[J]. Chinese Science Bulletin, 2010, 55: 3329-3337.
[21] Sharifi A, Dinpashoh Y. Sensitivity analysis of the Penman-Monteith reference crop evapotranspiration to climatic variables in Iran[J]. Water Resources Management, 2014, 28(15): 5465-5476.
[22] 邹海平, 陈汇林, 田光辉, 等. 海南岛参考作物蒸散量时空变化特征及成因分析[J]. 中国农业气象, 2018, 39(1): 18-26.
  [Zou Haiping, Chen Huilin, Tian Guanghui, et al. Spatiotemporal change characteristics and causes analysis of reference crop evapotranspiration in Hainan Island[J]. Chinese Journal of Agrometeorology, 2018, 39(1): 18-26.]
[23] 刘玉汐, 任景全, 王冬妮, 等. 吉林省参考作物蒸散量时空分布及成因分析[J]. 生态环境学报, 2019, 28(11): 2208-2215.
  [Liu Yuxi, Ren Jingquan, Wang Dongni, et al. Spatio-temporal distribution characteristics and causes analysis of reference crop evapotranspiration in Jilin Province[J]. Ecology and Environmental Sciences, 2019, 28(11): 2208-2215.]
[24] 闫妍, 黄凯燕, 胡宝清, 等. 1965—2018年广西西江流域参考作物蒸散量时空演变及其影响因子[J]. 生态学杂志, 2020, 39(5): 1676-1684.
  [Yan Yan, Huang Kaiyan, Hu Baoqing, et al. Spatial and temporal variations of reference evapotranspiration and its influencing factors in Guangxi Xijiang River Basin from 1965 to 2018[J]. Chinese Journal of Ecology, 2020, 39(5): 1676-1684.]
[25] 石欣荣, 佘敦先, 夏军, 等. 1960—2019年三北地区潜在蒸散发的变化及归因[J]. 武汉大学学报(工学版), 2022, 55(10): 973-984.
  [Shi Xinrong, She Dunxian, Xia Jun, et al. Variation and attribution of potential evapotranspiration in the Three-Northern Regions, China during 1960-2019[J]. Engineering Journal of Wuhan University, 2022, 55(10): 973-984.]
[26] 刘小莽, 郑红星, 刘昌明, 等. 海河流域潜在蒸散发的气象敏感性分析[J]. 资源科学, 2009, 31(9): 1470-1476.
  [Liu Xiaomang, Zheng Hongxing, Liu Changming, et al. Sensitivity of the potential evapotranspiration to key climatic variables in the Haihe River Basin[J]. Resources Science, 2009, 31(9): 1470-1476.]
[27] 钱多, 查天山, 吴斌, 等. 毛乌素沙地参考作物蒸散量变化特征与成因分析[J]. 生态学报, 2017, 37(6): 1966-1974.
  [Qian Duo, Zha Tianshan, Wu Bin, et al. Spatio-temporal distribution characteristics of reference crop evapotranspirationin the Mu Us Desert[J]. Acta Ecologica Sinica, 2017, 37(6): 1966-1974.]
[28] 胡琦, 董蓓, 潘学标, 等. 1961—2014年中国干湿气候时空变化特征及成因分析[J]. 农业工程学报, 2017, 33(6): 124-132.
  [Hu Qi, Dong Bei, Pan Xuebiao, et al. Spatiotemporal variation and causes analysis of dry-wet climate over period of 1961-2014 in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 124-132.]
Outlines

/