Analysis of surface solar radiation under different cloud conditions in Xinjiang and the surrounding “Belt and Road” regions
Received date: 2024-04-11
Revised date: 2024-06-26
Online published: 2024-09-25
The spatial-temporal changes in surface solar radiation from 2002 to 2022 in Xinjiang and the surrounding “Belt and Road” regions under cloudless and cloudy conditions were compared using the CERES Aqua FM3 Edition4A SSF data set. Under both cloud conditions, the annual mean surface solar radiation was highest in the southern Xinjiang, Qinghai-Xizang Plateau, and central and northern Pakistan. The maximum irradiance under cloudless and cloudy conditions was 1029 W·m-2 and 789 W·m-2, respectively. The regions of lowest solar irradiance, with the lowest values being 117 W·m-2 under cloudless and 314 W·m-2 under cloudy conditions, are primarily located in Tianshan Mountains, northern Pakistan, and northern Tajikistan. These figures indicate that the variation in solar radiation is relatively smaller under cloudy conditions. The average annual solar radiation in the study area for cloudless and cloudy conditions increased at the rate of 0.36 W·m-2 and 0.39 W·m-2 from 2002 to 2022, respectively. From 2003 to 2022, the highest values of annual average irradiance under cloudless and cloudy conditions occurred in 2005 (759.32 W·m-2) and 2016 (599.70 W·m-2), respectively. The difference in solar radiation between the nine ground stations under cloud conditions (excluding Turpan and Altai stations) ranged from 50 to 150 W·m-2; the irradiance values at the remaining stations ranged from 150 to 250 W·m-2. The irradiance in most areas was 100-200 W·m-2 higher without cloud cover, and the regions where the difference is significant are primarily the Tianshan Mountains, northern Qinghai-Xizang Plateau, and Kunlun Mountain, with the largest difference of 505.76 W·m-2.
SUN Linlin , LIU Qiong , HUANG Guan , CHEN Yonghang , WEI Xin , GUO Yulin , ZHANG Taixi , GAO Tianyi , XU Yunhong . Analysis of surface solar radiation under different cloud conditions in Xinjiang and the surrounding “Belt and Road” regions[J]. Arid Zone Research, 2024 , 41(9) : 1480 -1490 . DOI: 10.13866/j.azr.2024.09.05
[1] | 刘强, 邓旭, 王博文, 等. “一带一路”沿线国家能源部门气候变化减缓技术需求评估[J]. 西北大学学报(自然科学版), 2021, 51(4): 675-683. |
[Liu Qiang, Deng Xu, Wang Bowen, et al. Climate change mitigation technology needs assessment for energy sector in countries along the Belt and Road[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(4): 675-683.] | |
[2] | 肖佳, 梅琦, 黄晓琪, 等. “双碳”目标下我国光伏发电技术现状与发展趋势[J]. 天然气技术与经济, 2022, 16(5): 64-69. |
[Xiao Jia, Mei Qi, Huang Xiaoqi, et al. Status quo and development trend of photovoltaic power-generating technology under the dual-carbon goal[J]. Natural Gas Technology and Economy, 2022, 16(5): 64-69.] | |
[3] | 田政卿, 张勇, 刘向, 等. 光伏电站建设对陆地生态环境的影响:研究进展与展望[J]. 环境科学, 2024, 45(1): 239-247. |
[Tian Zhengqing, Zhang Yong, Liu Xiang, et al. Effects of photovoltaic power station construction on terrestrial environment: Retrospect and prospect[J]. Environmental Science, 2024, 45(1): 239-247.] | |
[4] | 刘莹, 任丽雯, 杨华, 等. 河西走廊东部太阳总辐射时空分布特征[J]. 中国农学通报, 2023, 39(20): 82-90. |
[Liu Ying, Ren Liwen, Yang Hua, et al. Temporal and spatial distribution characteristics of total solar radiation in the east of Hexi Corridor[J]. Chinese Agricultural Science Bulletin, 2023, 39(20): 82-90.] | |
[5] | 顾玮, 古丽·加帕尔, 尹瀚民, 等. 新疆南疆地区太阳能资源时空分布特征及区划研究[J]. 干旱区地理, 2021, 44(6): 1665-1675. |
[Gu Wei, Guli Japaer, Yin Hanmin, et al. Spatial and temporal distribution characteristic and division research of solar energy resources in southern Xinjiang[J]. Arid Land Geography, 2021, 44(6): 1665-1675.] | |
[6] | 杨凤娟, 亢燕铭, 刘琼, 等. 新疆地面太阳辐射及其CERES/SSF卫星资料适用性研究[J]. 干旱区研究, 2019, 36(6): 1401-1410. |
[Yang Fengjuan, Kang Yanming, Liu Qiong, et al. Surface solar radiation in Xinjiang and the applicability of CERES/SSF satellite data[J]. Arid Zone Research, 2019, 36(6): 1401-1410.] | |
[7] | 于涵, 张杰, 刘诗梦. 基于CERES卫星资料的青藏高原有效辐射变化规律[J]. 高原气象, 2018, 37(1): 106-122. |
[Yu Han, Zhang Jie, Liu Shimeng. The variation of effective radiation in Qinghai-Tibetan Plateau based on the CERES satellite data[J]. Plateau Meteorology, 2018, 37(1): 106-122.] | |
[8] | Habiba K, Muhammad Z. Estimation of solar radiation in southern areas of Pakistan using radiation models[J]. Journal of Renewable and Sustainable Energy, 2016, 8(4): 43701. |
[9] | Matuszko D. Infuence of the extent and general of cloud cover on solar radiation intensity[J]. International Journal of Climatology, 2012, 32(15): 2403-2414. |
[10] | Liu Y, Xia J, Shi C X, et al. An improved cloud classification algorithm for China’s FY-2C multi-channel images using artificial neural network[J]. Sensors, 2009, 9(7): 5558-5579. |
[11] | Zhang J F, Kota W, Jun Y, et al. Short-period fluctuation and spatial distribution of solar irradiance under clouds[J]. Japanese Journal of Applied Physics, 2018, 57: 08RG12. |
[12] | 秦放, 李登宣, 丁煌, 等. 基于CERES数据分析中国云对地表太阳辐射影响特征[J]. 太阳能学报, 2022, 43(9): 8-14. |
[Qin Fang, Li Dengxuan, Ding Huang, et al. Chracteristics of surface solar radiation and cloud fraction in China based on CERES[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 8-14.] | |
[13] | Si Y W, Wang H Q, Wang Y J, et al. Effects of single-layer low clouds on the surface solar radiation in East Asia[J]. Solar Energy, 2021, 224: 1099-1106. |
[14] | 张淑花, 李新功, 李奇虎, 等. 提孜那甫河流域地表太阳辐射估算及其影响因素分析[J]. 干旱区地理, 2022, 45(3): 734-745. |
[Zhang Shuhua, Li Xingong, Li Qihu, et al. Estimation of surface solar radiation and analysis of its influencing factors in the Tizinafu River Basin[J]. Arid Land Geography, 2022, 45(3): 734-745.] | |
[15] | Chen S, Lu X, Miao Y F, et al. The potential of photovoltaics to power the Belt and Road Initiative[J]. Joule, 2019, 3(8): 1895-1912. |
[16] | 马新亮, 阿力木江·依民尼牙孜. 践行高质量发展理念:新疆太阳能产业的创新实践[J]. 中国外资, 2023(10): 27-29. |
[Ma Xinliang, Alimujiang Yiminniyazi. Practicing the concept of high-quality development: Innovative practices of the solar energy industry in Xinjiang[J]. Foreign Investment in China, 2023(10): 27-29.] | |
[17] | 杨凤娟. 新疆晴空地表短波辐射的 Aqua/CERES/SSF 卫星反演资料误差及其气溶胶影响研究[D]. 上海: 东华大学, 2019. |
[Yang Fengjuan. Study on Errors of Surface Shortwave Radiation from Aqua/CERES/SSF and its Aerosol’s Influence under Clear-Sky in Xinjiang[D]. Shanghai: Donghua University, 2019.] | |
[18] | 马蓉蓉, 游庆龙, 蔡淼, 等. 基于 CERES 卫星资料分析近15 a云量变化[J]. 干旱气象, 2018, 36(6): 911-920. |
[Ma Rongrong, You Qinglong, Cai Miao, et al. The cloud variation over China in recent 15 years based on CERES satellite data[J]. Journal of Arid Meteorology, 2018, 36(6): 911-920.] | |
[19] | 张晓通. 全球陆表下行短波辐射和光合有效辐射反演算法研究[D]. 武汉: 武汉大学, 2010. |
[Zhang Xiaotong. Estimation of Land Surface Incident Solar Radiation and Photosynthetically Active Radiation[D]. Wuhan: Wuhan University, 2010.] | |
[20] | 陈春美, 钟珂, 陈勇航, 等. 干旱区典型城市云对太阳辐射的影响[J]. 干旱区研究, 2018, 35(2): 436-443. |
[Chen Chunmei, Zhong Ke, Chen Yonghang, et al. Effects of clouds on solar radiation over typical city in Arid Area[J]. Arid Zone Research, 2018, 35(2): 436-443.] | |
[21] | Gupta S K. The Langley Parameterized Shortwave Algorithm (lpsa) for Surface Radiation Budget Studies[M]. Hampton, Virginia: National Aeronautics and Space Administration, Langley Research Center, 2001. |
[22] | Wielicki B A, Barkstrom B R, Baum B A, et al. Clouds and the earth’s radiant energy system (ceres): Algorithm overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1127-1141. |
[23] | 刘琼. 上海地区气溶胶对低层暖云的影响机制及气溶胶-云辐射效应研究[D]. 上海: 东华大学, 2017. |
[Liu Qiong. Study on Influences of Aerosols on Lower Warm Cloud and Aerosol-Cloud Radiative Effect in Shanghai[D]. Shanghai: Donghua University, 2017.] | |
[24] | 黄家敏, 杨洪海, 陈勇航, 等. 基于GEWEX-SRB资料的新疆地区太阳辐射时空分布特征[J]. 太阳能学报, 2017, 38(2): 516-523. |
[Huang Jiamin, Yang Honghai, Chen Yonghai, et al. Spatial and temporal distribution of solar radiation in Xingjiang area based on GEWEX-SRB data[J]. Acta Energiae Solaris Sinica, 2017, 38(2): 516-523.] | |
[25] | Huang Guan, Chen Yonghang, Li Zhengqiang, et al. Validation and accuracy analysis of the Collection 6.1 MODIS aerosol optical depth over the Westernmost City in China based on the sun-sky radiometer observations from SONET[J]. Earth and Space Science, 2020, 7: e2019EA001041. |
[26] | Huang Guan, Liu Qiong, Wang Yanyu, et al. The accuracy improvement of clear-sky surface shortwave radiation derived from CERES SSF dataset with a simulation analysis[J]. The Science of the Total Environment, 2020, 749: 141671. |
[27] | 吴其重, 王自发, 崔应杰. 我国近20年太阳辐射时空分布状况模式评估[J]. 应用气象学报, 2010, 21(3): 343-351. |
[Wu Qizhong, Wang Zifa, Cui Yingjie. Evaluating the solar radiation resources of China in recent 20 Years by meteorological model[J]. Journal of Applied Meteorological Science, 2010, 21(3): 343-351.] | |
[28] | 庞明珠, 周黛怡, 陈勇航, 等. 基于CERES/Aqua卫星资料的新疆地面向下短波辐射时空分布特征[J]. 沙漠与绿洲气象, 2017, 11(5): 9-15. |
[Pang Mingzhu, Zhou Daiyi, Chen Yonghang, et al. Spatial and temporal distribution of downward surface shortwave in Xinjiang based on CERES/Aqua data[J]. Desert and Oasis Meteorology, 2017, 11(5): 9-15.] | |
[29] | 陈光灿, 李函璐, 傅云飞. 利用MODIS和CERES遥感数据研究青藏高原的云辐射强迫效应[J]. 高原气象, 2021, 40(1): 15-27. |
[Chen Guangcan, Li Hanlu, Fu Yunfei. The analysis of the cloud’s radiative forcing effect over Qinghai-Xizang Plateau based on MODIS and CERES data[J]. Plateau Meteorology, 2021, 40(1): 15-27.] | |
[30] | Hartmann D L, Ockert-Bell M E, Michelsen M L. The effect of cloud type on earth’s energy balance: Global analysis[J]. Journal of Climate, 1992, 5: 1281-1304. |
[31] | Bony S, Stevens B, Frierson D M W, et al. Clouds, circulation and climate sensitivity[J]. Nature Geoscience, 2015, 8(4): 261-268. |
[32] | Zelinka M D, Randall D A, Webb M J, et al. Clearing clouds of uncertainty[J]. Nature Climate Change, 2017, 7(10): 674-678. |
[33] | 卢潇楠, 李国庆, 杨凯迪, 等. 2010—2021年中国光伏电站的空间分布及时空变化分析[J]. 太阳能, 2023, 44(11): 5-11. |
[Lu Xiaonan, Li Guoqing, Yang Kaidi, et al. Analysis of spatial distribution and spatiotemporal changes of PV power stations in China from 2010 to 2021[J]. Solar Energy, 2023, 44(11): 5-11.] | |
[34] | Xian Y, Wang T, Leng W, et al. Can topographic effects on solar radiation be ignored: Evidence from the Tibetan Plateau[J]. Geophysical Research Letters, 2024, 51(6): e2024GL108653. |
[35] | 乔楠, 蒋波涛, 郑雨, 等. 基于深度模糊神经网络的太阳总辐射预测研究[J]. 太阳能学报, 2024, 45(2): 59-64. |
[Qiao Nan, Jiang Botao, Zheng Yu, et al. Research on global solar radiation forecast based on deep fuzzy neural network[J]. Acta Energiae Solaris Sinica, 2024, 45(2): 59-64.] | |
[36] | 黎微微, 胡斯勒图, 陈洪滨, 等. 利用MODIS资料计算不同云天条件下的地表太阳辐射[J]. 遥感技术与应用, 2017, 32(4): 643-650. |
[Li Weiwei, Husi Letu, Chen Hongbin, et al. Estimation of surface solar radiation using MODIS satellite data and RSTAR model[J]. Remote Sensing Technology and Application, 2017, 32(4): 643-650.] | |
[37] | 杨健博, 蔡子颖, 杨旭, 等. 气溶胶辐射效应对气象和环境影响的观测与模拟研究[J]. 中国环境科学, 2023, 43(1): 38-51. |
[Yang Jianbo, Cai Ziying, Yang Xu, et al. Observation and modeling study of the influence of aerosol radiation effect on meteorology and environment[J]. China Environmental Science, 2023, 43(1): 38-51.] | |
[38] | 王云鹏, 李红英, 姚玉璧, 等. 敦煌太阳总辐射多时间尺度变化特征及影响因素[J]. 干旱区研究, 2023, 40(12): 1885-1897. |
[Wang Yunpeng, Li Hongying, Yao Yubi, et al. Multi-time scale change characteristics and influencing factors of total solar radiation in Dunhuang City[J]. Arid Zone Research, 2023, 40(12): 1885-1897.] |
/
〈 | 〉 |