Paleoclimatic evolution and driving mechanisms in arid areas of inland Asia during the Middle Miocene Climatic Optimum in the context of global climate warming
Received date: 2023-12-12
Revised date: 2024-04-26
Online published: 2024-08-22
The Mid-Miocene Climatic Optimum, a notable global warming event that occurred during cooling in the Cenozoic period, is being considered as a potential analog for future climate conditions. Arid areas of inland Asia are representative of mid-latitude arid zones throughout the globe, and their desertification exerts the strongest and most direct impacts on human habitation environments. Against the backdrop of global warming, which is compounded by human activities, these arid zones become increasingly fragile, with their expansion or alteration directly impacting human survival and sustainable development. The exploration of the climatic evolutionary history of the arid areas of inland Asia during the Middle Miocene under a global warming scenario can provide crucial insights for the projection of climate changes in arid regions under future warming patterns. This study reviewed the existing research on the paleoclimatic evolution during the Middle Miocene in typical basins of arid areas of inland Asia. Through a comprehensive analysis of various climatic proxies, including environmental magnetic parameters, pollen, and isotopes, the findings indicate the prevailing trend is toward increased humidity in most regions during this period, although there were variations in the timing of humidification and some areas remained arid. However, significant controversy remains regarding the primary regulator of the formation of the Mid-Miocene Climatic Optimum: some scholars argue that eruptions of Columbia basalt are the primary factor; others propose that tectonic activity is the main driver. To address the aforementioned controversies, obtaining higher-resolution records with precise age control is essential to determine the onset response time of the Mid-Miocene warming event. Through the accurate interpretation of climatic proxies, especially pollen, which directly and sensitively responds to paleoclimatic changes, as well as environmental magnetic parameters and geochemical ratios encapsulating paleoenvironmental information, the various factors influencing climate change can be clarified to reveal the driving mechanisms behind the climatic evolution during the Mid-Miocene Climatic Optimum in arid areas of inland Asia.
LYU Zhuangzhuang , QIAO Qingqing , DONG Sunyi , WANG Dong . Paleoclimatic evolution and driving mechanisms in arid areas of inland Asia during the Middle Miocene Climatic Optimum in the context of global climate warming[J]. Arid Zone Research, 2024 , 41(8) : 1309 -1322 . DOI: 10.13866/j.azr.2024.08.05
[1] | 沈树忠, 张飞飞, 王文倩, 等. 深时重大生物和气候事件与全球变化:进展与挑战[J]. 科学通报, 2024, 69(2): 268-285. |
[ Shen Shuzhong, Zhang Feifei, Wang Wenqian, et al. Deep-time significant biological and climatic events and global change: Progress and challenges[J]. Science Bulletin, 2024, 69(2): 268-285. ] | |
[2] | 张品茹. 气候变化与全球生物多样性[J]. 生态经济, 2023, 39(2): 5-8. |
[ Zhang Pinru. Climate change and global biodiversity[J]. Ecological Economics, 2023, 39(2): 5-8. ] | |
[3] | Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387. |
[4] | 唐自华. 新生代主要暖期及其对“人为变暖”的启示[J]. 第四纪研究, 2011, 31(6): 1053-1059. |
[ Tang Zihua. Major warm periods in the Holocene and their implications for “anthropogenic warming”[J]. Quaternary Sciences, 2011, 31(6): 1053-1059. ] | |
[5] | You Y, Huber M, Müller R D, et al. Simulation of the Middle Miocene Climate Optimum[J]. Geophysical Research Letters, 2009, 36(4): L04702. |
[6] | Zachos J, Pagani M, Sloan L, et al. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present[J]. Science, 2001, 292(5517): 686-693. |
[7] | Reuter M, Kern A K, Harzhauser M, et al. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene[J]. Gondwana Research, 2013, 23(3): 1172-1177. |
[8] | Scholz S R, Petersen S V, Escobar J, et al. Isotope sclerochronology indicates enhanced seasonal precipitation in northern South America (Colombia) during the Mid-Miocene Climatic Optimum[J]. Geology, 2020, 48(7): 668-672. |
[9] | Sosdian S M, Babila T L, Greenop R, et al. Ocean carbon storage across the Middle Miocene: A new interpretation for the Monterey Event[J]. Nature Communications, 2020, 11(1): 134. |
[10] | Wang B, Shi G, Xu C, et al. The Mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia[J]. Science Advances, 7(18): eabg0625. |
[11] | Chen F, Xie T, Yang Y, et al. Discussion of the “warming and wetting” trend and its future variation in the drylands of Northwest China under global warming[J]. Science China-Earth Sciences, 2023, 66(6): 1241-1257. |
[12] | Dai S, Zhang M Z, Peng D X, et al. The mesozoic-cenozoic evolution of the tectonic and climatic patterns, NW China[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 153-168. |
[13] | 赵领娣, 冯剑. 中国西北干旱区城市水、大气污染排放与FDI关系研究[J]. 干旱区研究, 2020, 37(1): 67-73. |
[ Zhao Lingdi, Feng Jian. Relationship between water & air pollutant emission and FDI in arid cities in Northwest China[J]. Arid Zone Research, 2020, 37(1): 67-73. ] | |
[14] | 杨雪梅, 王倩, 魏怀东. 气候变暖背景下近30 a北半球植被变化研究综述[J]. 干旱区研究, 2016, 33(2): 379-391. |
[ Yang Xuemei, Wang Qian, Wei Huaidong. Vegetation variation in the North Hemisphere under climate warming in the last 30 years[J]. Arid Zone Research, 2016, 33(2): 379-391. ] | |
[15] | 何珍珍, 王宏卫, 杨胜天, 等. 塔里木盆地中北部绿洲生态安全评价[J]. 干旱区研究, 2018, 35(4): 963-970. |
[ He Zhenzhen, Wang Hongwei, Yang Shengtian, et al. Evaluation on ecological security and analysis of influence factors of oasis in Northwest arid region[J]. Arid Zone Research, 2018, 35(4): 963-970. ] | |
[16] | Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 1975, 189(4201): 419-426. |
[17] | Sun J, Zhu R, Bowler J. Timing of the Tianshan Mountains uplift constrained by magnetostratigraphic analysis of molasse deposits[J]. Earth and Planetary Science Letters, 2004, 219(3): 239-253. |
[18] | Tapponnier P, Molnar P. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal regions[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B7): 3425-3459. |
[19] | 滕晓华, 张志高, 韩文霞, 等. 塔里木盆地南缘黄土粒度特征及其环境意义[J]. 沉积学报, 2015, 33(5): 941-950. |
[ Teng Xiaohua, Zhang Zhigao, Han Wenxia, et al. Loess grain size characteristics and their environmental significance in the southern margin of the Tarim Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5): 941-950. ] | |
[20] | Steinthorsdottir M, Coxall H K, Boer A M D, et al. The Miocene: The future of the past[J]. Paleoceanography and Paleoclimatology, 2020, 36(4): e2020PA004037. |
[21] | Milankovi? M. Canon of Insolation and the Ice-age Problem (Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem) Belgrade, 1941[M]. Jerusalem: Israel Program for Scientific Translations; [available from U.S. Dept. of Commerce, Clearinghouse for Federal Scientific and Technical Information, Springfield, Va.]Jerusalem, 1969. |
[22] | Berger A. Milankovitch theory and climate[J]. Reviews of Geophysics, 1988, 26(4): 624-657. |
[23] | 中国大百科全书总编辑委员会, 《中国地理》编辑部. 中国大百科全书: 中国地理[M]. 北京: 中国大百科全书出版社, 1993. |
[ General Editorial Committee of the Encyclopedia of China, Editorial Department of China Geography. Encyclopedia of China: Geography of China[M]. Beijing: Encyclopedia of China Publishing House, 1993. ] | |
[24] | Hui Z, Zhang J, Ma Z, et al. Global warming and rainfall: Lessons from an analysis of Mid-Miocene climate data[J]. Cenozoic Climate Change in Eastern Asia-PART II, 2018, 512: 106-117. |
[25] | You Y. Climate-model evaluation of the contribution of sea-surface temperature and carbon dioxide to the Middle Miocene Climate Optimum as a possible analogue of future climate change[J]. Australian Journal of Earth Sciences, 2010, 57(2): 207-219. |
[26] | Ennyu A. Middle Miocene Climate Evolution in the Pacific Realm[D]. Pennsylvania State: The Pennsylvania State University, 2003. |
[27] | Wei J, Liu H, Zhao Y, et al. Simulation of the climate and ocean circulations in the Middle Miocene Climate Optimum by a coupled model FGOALS-g3[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2023, 617: 111509. |
[28] | Goldner A, Herold N, Huber M. The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1[J]. Climate of The Past, 2014, 10(2): 523-536. |
[29] | 商沙沙, 廉丽姝, 马婷, 等. 近54 a中国西北地区来气温和降水的时空变化特征[J]. 干旱区研究, 2018, 35(1): 68-76. |
[ Shang Shasha, Lian Lishu, Ma Ting, et al. The temporal and spatial characteristics of temperature and precipitation in Northwestern China in recent 54 years[J]. Arid Zone Research, 2018, 35(1): 68-76. ] | |
[30] | 曾帝, 刘世伟, 秦甲. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869. |
[ Zeng Di, Liu Shiwei, Qin Jia. Research progress on hydrogen and oxygen isotopes in precipitation in the arid region of Northwest China[J]. Arid Zone Research, 2020, 37(4): 857-869. ] | |
[31] | Miao Y, Zhang T, Huang K, et al. Pollen assemblages reflect a Mid-Miocene precipitation gradient in the northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 617: 111514. |
[32] | Li Yue, Li Bo, Li Tao. Distribution pattern and influence factors of benthic foraminifera in the surface sediments of northern South China Sea[J]. Marine Geology Letters, 2022, 38(2): 30-36. |
[33] | Woodruff F, Savin S. Mid-Miocene isotope stratigraphy in the deep sea: High-resolution correlations, paleoclimatic cycles, and sediment preservation[J]. Paleoceanography, 1991, 6(6): 755-806. |
[34] | Billups K, Channell J E T, Zachos J. Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic[J]. Paleoceanography and Paleoclimatology, 2002, 17(1): 4-1-4-11. |
[35] | Holbourn A, Kuhnt W, Schulz M, et al. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion[J]. Earth and Planetary Science Letters, 2007, 261(3): 534-550. |
[36] | Kochhann K G D, Holbourn A, Kuhnt W, et al. Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum[J]. Paleoceanography, 2016, 31(9): 1176-1192. |
[37] | Holbourn A, Kuhnt W, Kochhann K G D, et al. Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum[J]. Geology, 2015, 43(2): 123-126. |
[38] | Miller K G, Browning J V, Schmelz W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 6(20): eaaz1346. |
[39] | Bouchet P, Bary S, Virginie H, et al. How many species of molluscs are there in the world’s oceans, and who is going to describe them?[J]. Mémoires du Muséum National d’Histoire Naturelle, 2016, 208: 9-24. |
[40] | Crampton J S, Beu A G, Cooper R A, et al. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent[J]. Paleobiology, 2006, 32(4): 509-532. |
[41] | Mondal S, Harries P J. The effect of taxonomic corrections on phanerozoic generic richness trends in Marine Bivalves with a discussion on the Clade’s overall history[J]. Paleobiology, 2016, 42(1): 157-171. |
[42] | Sibert E, Norris R, Cuevas J, et al. Eighty-five million years of Pacific Ocean gyre ecosystem structure: Long-term stability marked by punctuated change[J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1831): 20160189. |
[43] | Quental T B, Marshall C R. Diversity dynamics: Molecular phylogenies need the fossil record[J]. Trends in Ecology & Evolution, 2010, 25(8): 434-441. |
[44] | Marx F G, Fordyce R E. Baleen boom and bust: A synthesis of mysticete phylogeny, diversity and disparity[J]. Royal Society Open Science, 2015, 2(4): 140434. |
[45] | Marx F G, Uhen M D. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales[J]. Science, 2010, 327(5968): 993-996. |
[46] | Berta A, Churchill M, Boessenecker R W. The origin and evolutionary biology of pinnipeds: Seals, sea lions, and walruses[J]. Annual Review of Earth and Planetary Sciences, 2018, 46(1): 203-228. |
[47] | Koretsky I A, Domning D P. One of the oldest seals (Carnivora, Phocidae) from the old world[J]. Journal of Vertebrate Paleontology, 2014, 34(1): 224-229. |
[48] | Churchill M, Boessenecker R W, Clementz M T. Colonization of the Southern Hemisphere by fur seals and sea lions (Carnivora: Otariidae) revealed by combined evidence phylogenetic and Bayesian biogeographical analysis[J]. Zoological Journal of the Linnean Society, 2014, 172(1): 200-225. |
[49] | Chang H, Li L, Qiang X, et al. Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2015, 430: 271-283. |
[50] | Guan C, Chang H, Yan M, et al. Rock magnetic constraints for the Mid-Miocene Climatic Optimum from a high-resolution sedimentary sequence of the northwestern Qaidam Basin, NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 532: 109263. |
[51] | Miao Y, Chang H, Li L, et al. Early Oligocene-Late Miocene wildfire history in the Northern Tibetan Plateau and links to temperature-driven precipitation changes[J]. Frontiers in Earth Science, 2022, 10. http://dx.doi.org/10.3389/feart.2022.850809. |
[52] | Li L, Garzione C N, Pullen A, et al. Early-middle Miocene topographic growth of the northern Tibetan Plateau: Stable isotope and sedimentation evidence from the southwestern Qaidam Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461: 201-213. |
[53] | Miao Y, Fang X, Liu Y Christopher, et al. Late Cenozoic pollen concentration in the western Qaidam Basin, northern Tibetan Plateau, and its significance for paleoclimate and tectonics[J]. Review of Palaeobotany and Palynology, 2016, 231: 14-22. |
[54] | Miao Y, Fang X, Herrmann M, et al. Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1): 30-38. |
[55] | Miao Y. Late Cenozoic continuous aridification in the western Qaidam Basin: Evidence from sporopollen records[J]. Climate of the Past, 2013, 9: 1863-1877. |
[56] | 王伟涛, 张培震, 段磊, 等. 柴达木盆地新生代地层年代框架与沉积-构造演化[J]. 科学通报, 2022, 67(Z2): 3452-3475. |
[ Wang Weitao, Zhang Peixia, Duan Lei, et al. Cenozoic stratigraphic framework and sedimentary-tectonic evolution of the Qaidam Basin[J]. Chinese Science Bulletin, 2022, 67(Z2): 3452-3475. ] | |
[57] | Duan L, Zhan B, Wang W, et al. Magnetostratigraphy of the Cenozoic Lulehe section in the Qaidam Basin: Implications for the tectonic deformation on the northeastern Tibetan Plateau[J]. Chinese Science Bulletin-Chinese, 2022, 67(9): 872-887. |
[58] | Yu J, Zheng D, Wang W, et al. Cenozoic tectonic development in the northeastern Tibetan Plateau: Evidence from thermochronological and sedimentological records[J]. Global and Planetary Change, 2023, 224. DOI: 10.1016/j.gloplacha.2023.104098. |
[59] | Li C, Zheng D, Zhou R, et al. Topographic growth of the northeastern Tibetan Plateau during the middle-late Miocene: Insights from integrated provenance analysis in the NE Qaidam Basin[J]. Basin Research, 2021, 33(6): 3212-3230. |
[60] | Wang Y, Sun G, Zhang S, et al. Depositional environment changes during the cenozoic in the Northeastern Margin of the Qinghai-Tibet Plateau[J]. Processes, 2022, 10(5). DOI: 10.3390/pr10051000. |
[61] | Fang X, Zhang W, Meng Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1): 293-306. |
[62] | Zhuang G, Brandon M T, Pagani M, et al. Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma[J]. Earth and Planetary Science Letters, 2014, 390: 186-198. |
[63] | Bao J, Song C, Yang Y, et al. Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic[J]. Journal of Asian Earth Sciences, 2019, 170: 155-165. |
[64] | Miao Y, Fang X, Sun J, et al. A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet Plateau[J]. Science, 2022, 378(6624): 1074-1079. |
[65] | 陈熠, 方小敏, 宋春晖, 等. 准噶尔盆地南缘新生代沉积物碎屑锆石记录的天山隆升剥蚀过程[J]. 地学前缘, 2012, 19(5): 225-233. |
[ Chen Yi, Fang Xiaomin, Song Chunhui, et al. Tianshan uplift and erosion process recorded by detrital zircons from Cenozoic sediments in the southern margin of the Junggar Basin[J]. Earth Science Frontiers, 2012, 19(5): 225-233. ] | |
[66] | Charreau J, Chen Y, Gilder S, et al. Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China)[J]. Tectonics, 2009, 28. http://dx.doi.org/10.1029/2007TC002137. |
[67] | Tang Z, Huang B, Dong X, et al. Anisotropy of magnetic susceptibility of the Jingou River section: Implications for late Cenozoic uplift of the Tian Shan[J]. Geochemistry Geophysics Geosystems, 2012, 13. https://doi.org/10.1029/2011GC003966. |
[68] | Tang Z, Ding Z, White P, et al. Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan[J]. Earth and Planetary Science Letters, 2011, 302(3-4): 439-447. |
[69] | Tang Z H, Ding Z L. A palynological insight into the Miocene aridification in the Eurasian interior[J]. Neogene Climate and Environmental Evolution in Eastern Eurasia, 2013, 22(3): 77-85. |
[70] | Charreau J, Kent-Corson M, Barrier L, et al. A high-resolution stable isotopic record from the Junggar Basin (NW China): Implications for the paleotopographic evolution of the Tianshan Mountains[J]. Earth and Planetary Science Letters, 2012, 341: 158-169. |
[71] | Ji J, Luo P, White P, et al. Episodic uplift of the Tianshan Mountains since the late Oligocene constrained by magnetostratigraphy of the Jingou River section, in the southern margin of the Junggar Basin, China[J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B5). https://doi.org/10.1029/2007JB005064. |
[72] | 何登发, 贾承造. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 2005(1): 64-77. |
[ He Dengfa, Jia Chengzao. Formation and evolution of the Tarim multi-cycle superimposed basin[J]. Oil & Gas Geology, 2005(1): 64-77. ] | |
[73] | Chang H, An Z, Wu F, et al. Late Miocene-early Pleistocene climate change in the mid-latitude westerlies and their influence on Asian monsoon as constrained by the K/Al ratio record from drill core Ls2 in the Tarim Basin[J]. Catena, 2017, 153: 75-82. |
[74] | Heermance R V, Pearson J, Moe A, et al. Erg deposition and development of the ancestral Taklimakan Desert (western China) between 12.2 and 7.0 Ma[J]. Geology, 2018, 46(10): 919-922. |
[75] | Liu W, Liu Z, An Z, et al. Late Miocene episodic lakes in the arid Tarim Basin, western China[J]. Proceedings of the National Academy of Sciences, 2014, 111(46): 16292-16296. |
[76] | Sun J, Gong Z, Tian Z, et al. Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 421: 48-59. |
[77] | Sun J, Liu W, Liu Z, et al. Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 189-200. |
[78] | Liu W, Liu Z, Sun J, et al. Onset of permanent Taklimakan Desert linked to the mid-Pleistocene transition[J]. Geology, 2020, 48(8): 782-786. |
[79] | Huang B, Piper J, Peng S, et al. Magnetostratigraphic study of the Kuche depression, Tarim Basin, and Cenozoic uplift of the Tian Shan range, Western China[J]. Earth and Planetary Science Letters, 2006, 251(3-4): 346-364. |
[80] | 刘立炜, 周慧, 张承泽, 等. 库车坳陷克拉苏构造带协同变形机制及盆山耦合关系[J]. 地质科学, 2022, 57(1): 61-72. |
[ Liu Liwei, Zhou Hui, Zhang Chengze, et al. Synergetic deformation mechanism and basin-mountain coupling relationship of the Kelasu Structural Belt in the Kuqa Depression[J]. Geological Science, 2022, 57(1): 61-72. ] | |
[81] | 李双建, 张然, 王清晨. 沉积物颜色和黏土矿物对库车坳陷第三纪气候变化的指示[J]. 沉积学报, 2006, 24(4): 521-530. |
[ Li Shuangjian, Zhang Ran, Wang Qingchen. Indications of tertiary climate change in the Kuqa Depression from sediment color and clay minerals[J]. Acta Sedimentologica Sinica, 2006, 24(4): 521-530. ] | |
[82] | 唐自华, 丁仲礼. 塔里木至少30 Ma以来持续干旱[C]// 中国地球物理学会, 中国地震学会, 全国岩石学与地球动力学研讨会组委会, 中国地质学会构造地质学与地球动力学专业委员会, 中国地质学会区域地质与成矿专业委员会. 2017中国地球科学联合学术年会论文集(十二)——专题24:青藏高原隆升与风化剥蚀和气候变化、专题25:南北地震带强震活动的深浅部构造特征与动力学机制. 北京: 中国和平音像电子出版社, 2017: 1. |
[ Tang Zihua, Ding Zhongli. Persistent aridity in Tarim for at least 30 Ma[C]// China Geophysical Society, Seismological Society of China, National Organizing Committee for the Symposium on Petrology and Geodynamics, Structural Geology and Geodynamics Committee of the Geological Society of China, Regional Geology and Mineral Resources Committee of the Geological Society of China. Proceedings of the 2017 Joint Annual Conference of Chinese Earth Sciences (Volume Twelve)—Special Topic 24:Uplift and Weathering Erosion of the Tibetan Plateau and Climate Change, Special Topic 25:Deep and Shallow Structural Characteristics and Dynamic Mechanisms of Strong Earthquake Activity in the North-South Seismic Belt. Beijing: China Peace Audio-Visual and Electronic Publishing House, 2017: 1. ] | |
[83] | Zhang Z, Sun J, Lü L, et al. Neogene climate evolution of the Tarim Basin, NW China: Evidence from environmental magnetism of the southern Tian Shan foreland[J]. Global and Planetary Change, 2020, 194: 103314. |
[84] | 卢海建, 李海兵, 刘栋梁. 中中新世中亚构造抬升驱动气候干旱化: 以塔里木盆地东南缘江尕勒萨伊剖面为例[J]. 中国地质, 2014, 41(5): 1724-1734. |
[ Lu Haijian, Li Haibing, Liu Dongliang. Uplift-driven climatic aridity during the middle Miocene: A case study of the Janggalsay section, southeast Tarim Basin[J]. Geology in China, 2014, 41(5): 1724-1734. ] | |
[85] | Kent-Corson M L, Ritts B D, Zhuang G, et al. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2009, 282(1): 158-166. |
[86] | B?hme M. The Miocene climatic optimum: Evidence from ectothermic vertebrates of Central Europe[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 195(3-4): 389-401. |
[87] | Mosbrugger V, Utescher T, Dilcher D L. Cenozoic continental climatic evolution of Central Europe[J]. Proceedings of the National Academy of Sciences, 2005, 102(42): 14964-14969. |
[88] | Hauptvogel D W, Passchier S. Early-Middle Miocene (17-14 Ma) Antarctic ice dynamics reconstructed from the heavy mineral provenance in the AND-2A drill core, Ross Sea, Antarctica[J]. Global and Planetary Change, 2012, 82: 38-50. |
[89] | Lebreton-Anberrée J, Li S, Li S F, et al. Lake geochemistry reveals marked environmental change in Southwest China during the Mid-Miocene Climatic Optimum[J]. Science Bulletin, 2016, 61(11): 897-910. |
[90] | 鹿化煜, 郭正堂. 晚新生代东亚气候变化: 进展与问题[J]. 中国科学: 地球科学, 2013, 43(12): 1907-1918. |
[ Lu Huayu, Guo Zhengtang. Climate change in East Asia during the Late Cenozoic: Progress and issues[J]. Science China: Earth Sciences, 2013, 43(12): 1907-1918. ] | |
[91] | Kutzbach J, Guetter P, Ruddiman W, et al. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: numerical experiments[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D15): 18393-18407. |
[92] | Liu X, Yin Z. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 183(3-4): 223-245. |
[93] | Manabe S, Terpstra T B. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments[J]. Journal of the atmospheric Sciences, 1974, 31(1): 3-42. |
[94] | Tada R, Zheng H, Clift P D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau[J]. Progress in Earth and Planetary Science, 2016, 3: 1-26. |
[95] | 邓涛, 方小敏, 李强, 等. 青藏高原及其周边新近纪综合地层、生物群与古地理演化[J]. 中国科学: 地球科学, 2024, 54(4): 1343-1378. |
[ Deng Tao, Fang Xiaomin, Li Qiang, et al. Integrative neogene stratigraphy, biotas and paleogeographic evolution of the Tibetan Plateau and its surrounding area[J]. Science China: Earth Sciences, 2024, 54(4): 1343-1378. ] | |
[96] | 高志勇, 周川闽, 冯佳睿, 等. 中新生代天山隆升及其南北盆地分异与沉积环境演化[J]. 沉积学报, 2016, 34(3): 415-435. |
[ Gao Zhiyong, Zhou Chuanmin, Feng Jiarui, et al. Tectonic uplift of the Cenozoic era in the Tianshan Mountains and its differentiation between southern and northern basins and sedimentary environment evolution[J]. Acta Sedimentologica Sinica, 2016, 34(3): 415-435. ] | |
[97] | Detection and Attribution of Climate Change: From Global to Regional[M]. Intergovernmental Panel on Climate Change. Climate Change 2013-The Physical Science Basis. 1st ed.ed. Cambridge University Press, 2014: 867-952. |
[98] | Kasbohm J, Schoene B. Rapid eruption of the Columbia River flood basalt and correlation with the Mid-Miocene Climate Optimum[J]. Science Advances, 2018, 4(9): eaat8223. |
[99] | Cramer B S, Toggweiler J R, Wright J D, et al. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation[J]. Paleoceanography, 2009, 24(4). https://doi.org/10.1029/2008PA001683. |
[100] | Longman J, Mills B J W, Donnadieu Y, et al. Assessing volcanic controls on Miocene climate change[J]. Geophysical Research Letters, 2022, 49(2). https://doi.org/10.1029/2021GL096519. |
[101] | Penman D E, Caves Rugenstein J K, Ibarra D E, et al. Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle[J]. Earth-Science Reviews, 2020, 209: 103298. |
[102] | Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7): 641-683. |
[103] | 张少华, 纪伟强, 陈厚彬. 早始新世气候适宜期的驱动机制研究进展: 来自藏南林子宗火山岩的制约[J]. 岩石学报, 2022, 38(5): 1313-1327. |
[ Zhang Shaohua, Ji Weiqiang, Chen Houbin. Research progress on the driving mechanisms of the Early Eocene climatic optimum: Constraints from the Linzizong volcanic rocks in southern Tibet[J]. Acta Petrologica Sinica, 2022, 38(5): 1313-1327. ] | |
[104] | Loutre M F, Berger A. Modeling the glacial-interglacial cycles in response to astronomical and CO2 forcings[C]// Berger A, Ercegovac M, Mesinger F. Milutin Milankovitch Anniversary Symposium: Paleoclimate And The Earth Climate System, 2005, 110: 173-183. |
[105] | 余继峰, 李卿宋, 召军. 从地层磁化率数据中提取米兰科维奇旋回信息[C]// Proceedings of 2011 AASRI Conference on Artificial Intelligence and Industry Application(AASRI-AIIA 2011 V3). 山东省沉积成矿作用与沉积矿产重点实验室, 山东科技大学地质科学与工程学院, 2011: 425-429. |
[ Yu Jifeng, Li Qingsong, Zhao Jun. Extracting Information of Milankovitch Cycles from Formation Magnetic Susceptibility Data[C]// Proceedings of 2011 AASRI Conference on Artificial Intelligence and Industry Application (AASRI-AIIA 2011 V3). Shandong Provincial Key Laboratory of Sedimentary Mineralization and Sedimentary Minerals, School of Geosciences and Engineering, Shandong University of Science and Technology, 2011: 425-429. ] | |
[106] | 刘孟凯, 房强, 吴怀春, 等. 华南纳庆剖面早二叠世沉积记录对米兰科维奇旋回的响应[J]. 第四纪研究, 2023, 43(6): 1526-1537. |
[ Liu Mengkai, Fang Qiang, Wu Huaichun, et al. Response of Early Permian Sedimentary records in the Naqing section of South China to the Milankovitch cycle[J]. Quaternary Sciences, 2023, 43(6): 1526-1537. ] | |
[107] | 黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66. |
[ Huang Chunju. Cyclostratigraphy and astronomical chronology and their research status in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66.] |
/
〈 | 〉 |