Weather and Climate

Spatiotemporal characteristics of different grades of precipitation in Yellow River Basin from 1960 to 2020

  • YUAN Zheng ,
  • ZHANG Zhigao ,
  • YAN Jin ,
  • LIU Jiayi ,
  • HU Zhuyu ,
  • WANG Yun ,
  • CAI Maotang
Expand
  • 1. School of Mathematical and Information Science, Anyang Institute of Technology, Anyang 455000, Henan, China
    2. School of Resources Environment and Tourism, Anyang Normal University, Anyang 455000, Henan, China
    3. Dingxi Meteorological Office of Gansu, Dingxi 743000, Gansu, China
    4. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China

Received date: 2024-01-08

  Revised date: 2024-04-15

  Online published: 2024-08-22

Abstract

The Yellow River Basin is an important ecologically fragile area in China. The clarification of the relationship between different levels of precipitation, precipitation days, and precipitation intensity in the basin is important to characterize the precipitation patterns in the basin. Using precipitation data collected from 96 meteorological stations in the Yellow River Basin from 1960 to 2020, the spatial and temporal variation characteristics of different grades of precipitation in the basin were analyzed using mathematical statistics and Pearson correlation analysis, and the contribution and impact of different grades of precipitation on the total precipitation were discussed. In the studied recent 61-year period, the annual precipitation and precipitation intensity in the Yellow River Basin followed increasing trends with rates of 0.008 mm·(10a)-1 and 0.12 mm·d-1·(10a)-1, respectively. The number of precipitation days followed a decreasing trend with a rate of -1.82 d·(10a)-1. The rainfall and days of light rain and moderate rain followed a downward trend; the amount and number of days of heavy rain, rainstorm, and heavy rainstorm followed an upward trend, and the precipitation intensity of each grade followed an increasing trend. Over the recent 61-year studied period, the highest occurrence rate of light rain was 84.32%, with the highest contribution rate from light rain (37.64%) followed by moderate rain (34.47%). The occurrence rate and contribution rate of light rain followed decreasing trends, whereas the occurrence rate and contribution rate of precipitation of heavy rain followed increasing trends. The areas with high values of light precipitation, light precipitation days, and light precipitation intensity were mainly concentrated in the southwest of the basin. As the precipitation level increased, the areas with high precipitation, precipitation days, and precipitation intensity were mainly concentrated in the southeast of the basin. Correlation analysis revealed that the annual precipitation of the Yellow River Basin was strongly affected by moderate and heavy rainfall, the annual precipitation days were strongly affected by the light rain days, and the annual precipitation intensity was strongly affected by the amount of heavy rain, rainstorm, and precipitation days. These findings can support ecological protection in the basin.

Cite this article

YUAN Zheng , ZHANG Zhigao , YAN Jin , LIU Jiayi , HU Zhuyu , WANG Yun , CAI Maotang . Spatiotemporal characteristics of different grades of precipitation in Yellow River Basin from 1960 to 2020[J]. Arid Zone Research, 2024 , 41(8) : 1259 -1271 . DOI: 10.13866/j.azr.2024.08.01

References

[1] Xu J H, Chen Y N, Li W H, et al. Understanding temporal and spatial complexity of precipitation distribution in Xinjiang, China[J]. Theoretical and Applied Climatology, 2016, 123(1): 321-333.
[2] Pokhrel Y, Felfelani F, Satoh Y, et al. Global terrestrial water storage and drought severity under climate change[J]. Nature Climate Change, 2021, 11(3): 226-233.
[3] IPCC. Special Report on Global Warming of 1.5 ℃[M]. UK: Cambridge University Press, 2018.
[4] 尹占娥, 田鹏飞, 迟潇潇. 基于情景的1951—2011年中国极端降水风险评估[J]. 地理学报, 20182018, 73(3): 405-413.
  [ Yin Zhan’e, Tian Pengfei, Chi Xiaoxiao. Multi-scenario-based risk analysis of precipitation extremes in China during the past 60 years (1951-2011)[J]. Acta Geographica Sinica, 2018, 73(3): 405-413. ]
[5] Liu J, Wang B, Cane M, et al. Divergent global precipitation changes induced by natural versus anthropogenic forcing[J]. Nature, 2013, 493(7434): 656-659.
[6] Murray V, Ebi K L. IPCC Special report on managing the risks of extreme events and disasters to advance climate change adaptation (SREX)[J]. Journal of Epidemiology and Community Health, 2012, 66(9): 759-760.
[7] Zhang Q, Xu C Y, Chen X, et al. Statistical behaviors of precipitation regimes in China and their links with atmospheric circulation 1960-2005[J]. International Journal of Climatology, 2011, 31(11): 1665-1678.
[8] 起永东, 何明琼, 郑永宏, 等. 汉江流域降水结构时空特征及影响因素分析[J]. 长江流域资源与环境, 2018, 27(12): 192-200.
  [ Qi Yongdong, He Mingqiong, Zheng Yonghong, et al. Analyses of rainfall characteristics and influencing factors in Hanjiang River Basin[J]. Resources and Environment in the Yangtze Basin, 2018, 27(12): 192-200. ]
[9] 刘占明, 徐丹, 魏兴琥, 等. 北江流域汛期降水结构变化特征[J]. 热带地理, 2020, 40(1): 145-153.
  [ Liu Zhanming, Xu Dan, Wei Xinghu, et al. Variation characteristics of precipitation structure during rainy season in Beijiang River Basin[J]. Tropical Geography, 2020, 40(1): 145-153. ]
[10] Trenberth K E. Changes in precipitation with climate change[J]. Climate Research, 2011, 47(1-2): 123-138.
[11] Karl T R, Knight R W, Plummer N. Trends in high-frequency climate variability in the twentieth century[J]. Nature, 1995, 377(6546): 217-220.
[12] Brunetti M, Maugeri M, Monti F, et al. Changes in daily precipitation frequency and distribution in Italy over the last 120 years[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D5): D05102.
[13] Groisman P Y, Knight R W, Karl T R. Changes in intense precipitation over the central United States[J]. Journal of Hydrometeorology, 2012, 13(1): 47-66.
[14] 王延吉, 神祥金, 姜明. 1961—2018年长白山区不同等级降水时空变化特征[J]. 气候与环境研究, 2021, 26(2): 227-238.
  [ Wang Yanji, Shen Xiangjin, Jiang Ming. Spatial-temporal variation characteristics of different grades of precipitation in Changbai Mountain from 1961 to 2018[J]. Climatic and Environmental Research, 2021, 26(2): 227-238. ]
[15] 刘伟东, 尤焕苓. 1978—2010年北京地区不同等级降水空间特征[J]. 干旱区研究, 2014, 31(6): 1053-1060.
  [ Liu Weidong, You Huanling. Precipitation spatial distribution characteristics in Beijing during 1978-2010[J]. Arid Zone Research, 2014, 31(6): 1053-1060. ]
[16] 白静漪, 管兆勇. 华东地区夏季不同等级降水变化特征分析[J]. 气象科学, 2014, 34(4): 365-372.
  [ Bai Jingyi, Guan Zhaoyong. Climatic characteristics of graded summer precipitation over East China[J]. Journal of the Meteorological Sciences, 2014, 34(4): 365-372. ]
[17] 曹彦超, 焦美玲, 秦拓, 等. 1973—2020年甘肃河东夏半年降水变化特征及影响因素分析[J]. 干旱区地理, 2022, 45(6): 1695-1706.
  [ Cao Yanchao, Jiao Meiling, Qin Tuo, et al. Variation characteristics and influencing factors of summer half-year precipitation in Hedong region of Gansu Province from 1973 to 2020[J]. Arid Land Geography, 2022, 45(6): 1695-1706. ]
[18] 黄婕, 王跃峰, 高路, 等. 1960—2011年福建省不同等级降水时空变化特征[J]. 中国水土保持科学, 2015, 13(2): 17-23.
  [ Huang Jie, Wang Yuefeng, Gao Lu, et al. Temporal-spatial characteristics of different rainfall levels in Fujian Province from 1960 to 2011[J]. Science of Soil and Water Conservation, 2015, 13(2): 17-23. ]
[19] Qu B, Lv A, Jia S, et al. Daily precipitation changes over large river basins in China, 1960-2013[J]. Water, 2016, 8(5): 185.
[20] 王璐璐, 延军平, 王鹏涛, 等. 海河流域不同等级降水时空变化特征及其影响[J]. 资源科学, 2015, 37(4): 690-699.
  [ Wang Lulu, Yan Junping, Wang Pengtao, et al. Spatial-temporal variation in precipitation for different categories and impacts in the Haihe River Basin[J]. Resources Science, 2015, 37(4): 690-699. ]
[21] 李远平, 朱诚, 马春梅, 等. 淠河流域不同强度等级降水变化研究[J]. 长江流域资源与环境, 2015, 24(9): 1477-1482.
  [ Li Yuanping, Zhu Cheng, Ma Chunmei, et al. Study on changes of different-class precipitation in intensity in Pi River valley[J]. Resources and Environment in the Yangtze Basin, 2015, 24(9): 1477-1482. ]
[22] 张强, 叶培龙, 王健顺, 等. 对黄河上游自然环境要素协调性的几点科学探讨与思考[J]. 地球科学进展, 2023, 38(3): 320-329.
  [ Zhang Qiang, Ye Peilong, Wang Jianshun, et al. Scientific discussion and ponder on the coordination of natural environmental in the upper Yellow River Basin[J]. Advances in Earth Science, 2023, 38(3): 320-329. ]
[23] Wang Y, Wang J, Zhang Q. Analysis of ecological drought risk characteristics and leading factors in the Yellow River Basin[J]. Theoretical and Applied Climatology, 2024, 155(3): 1739-1757.
[24] 黄建平, 张国龙, 于海鹏, 等. 黄河流域近40年气候变化的时空特征[J]. 水利学报, 2020, 51(9): 1048-1058.
  [ Huang Jianping, Zhang Guolong, Yu Haipeng, et al. Characteristics of climate change in the Yellow River Basin during recent 40 years[J]. Journal of Hydraulic Engineering, 2020, 51(9): 1048-1058. ]
[25] 何金梅, 李照荣, 闫昕旸, 等. 黄河兰州上游流域近4a汛期降水变化特征[J]. 干旱气象, 2019, 37(6): 899-905.
  [ He Jinmei, Li Zhaorong, Yan Xinyang, et al. Variation characteristics of precipitation in the upper lanzhou section of the Yellow River in flood season during 2015-2018[J]. Journal of Arid Meteorology, 2019, 37(6): 899-905. ]
[26] Gao T, Wang H. Trends in precipitation extremes over the Yellow River basin in North China: Changing properties and causes[J]. Hydrological Processes, 2017, 31(13): 2412-2428.
[27] Wang W, Shao Q, Yang T, et al. Changes in daily temperature and precipitation extremes in the Yellow River Basin, China[J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(2): 401-421.
[28] 高秉丽, 巩杰, 李焱, 等. 基于SPEI的黄河流域多尺度干湿特征分析[J]. 干旱区研究, 2022, 39(3): 723-733.
  [ Gao Bingli, Gong Jie, Li Yan, et al. Analysis of multi-scalar characteristics of dry and wet conditions in the Yellow River Basin based on SPEI[J]. Arid Zone Research, 2022, 39(3): 723-733. ]
[29] Yang J H, Zhang Q, Yue P, et al. Characteristics of warming and humidification in the Yellow River’s upper reaches and their impact on surface water resources[J]. International Journal of Climatology, 2023, 43(16): 7667-7681.
[30] 黄小梅, 齐冬梅, 李笛, 等. 西亚副热带西风急流年际变化与三江源区夏季降水的关系[J]. 干旱区研究, 2023, 40(1): 1-8.
  [ Huang Xiaomei, Qi Dongmei, Li Di, et al. Annual relationship between the West Asian subtropical westerly jet and summer precipitation over the Three River Source Region[J]. Arid Zone Research, 2023, 40(1): 1-8. ]
[31] 杨金虎, 张强, 杨博成, 等. 黄河上游暖湿化的多时间尺度特征及对生态植被的影响[J]. 高原气象, 2023, 42(4): 1018-1030.
  [ Yang Jinhu, Zhang Qiang, Yang Bocheng, et al. The multi-time scale characteristics and impacts on ecological vegetation of warming and humidification in the upper Yellow River[J]. Plateau Meteorology, 2023, 42(4): 1018-1030. ]
[32] 叶培龙, 张强, 王莺, 等. 1980—2018 年黄河上游气候变化及其对生态植被和径流量的影响[J]. 大气科学学报, 2020, 43(6): 967-979.
  [ Ye Peilong, Zhang Qiang, Wang Ying, et al. Climate change in the upper Yellow River Basin and its impact on ecological vegetation and runoff from 1980 to 2018[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 967-979. ]
[33] 中华人民共和国国家质量检测检验委总局, 中国国家标准化管理委员会. 降水量等级(GB/T 28592-2012)[S]. 北京: 中国标准出版社, 2012: 1-6.
  [ General Administration of Quality Super Vision, Inspection and Quarantine of the People and Republic of China. GB/T28592-2012 Grade of Precipitation[S]. Beijing: Standards Press of China, 2012: 1-6. ]
[34] 严中伟, 杨赤. 近几十年中国极端气候变化格局[J]. 气侯与环境研究, 2000, 5(3): 267-272.
  [ Yan Zhongwei, Yang Chi. Geographic patterns of extreme climate changes in China during 1951-1997[J]. Climatic and Environmental Research, 2000, 5(3): 267-272. ]
[35] 汪卫平, 杨修群, 张祖强, 等. 中国雨日数的气候特征及趋势变化[J]. 气象科学, 2017, 37(3): 317-328.
  [ Wang Weiping, Yang Xiuqun, Zhang Zuqiang. et al. The climatic characteristics and trends of rainy days over China[J]. Journal of the Meteorological Sciences, 2017, 37(3): 317-328. ]
[36] Qian W H, Fu J L, Yan Z W. Decrease of light rain events in summer associated with a warming environment in China during 1961-2005[J]. Geophysical Research Letters, 2007, 34(11): L11705.
[37] 董旭光, 顾伟宗, 孟祥新, 等. 山东省近50年来降水事件变化特征[J]. 地理学报, 2014, 69(5): 661-671.
  [ Dong Xuguang, Gu Weizong, Meng Xiangxin, et al. Change features of precipitation events in Shandong Province from 1961 to 2010[J]. Acta Geographica Sinica, 2014, 69(5): 661-671. ]
[38] Qian Y, Gong D Y, Leung R. Light rain events change over North America, Europe, and Asia for 1973-2009[J]. Atmospheric Science Letters, 2010, 11(4): 301-306.
[39] Cheng Y J, Lohmann U, Zhang J H, et al. Contribution of changes in seasurface temperature and aerosol loading to the decreasing precipitation trend in southern China[J]. Journal of Climate, 2005, 18(9): 1381-1390.
[40] Wu F T, Fu C B. Change of precipitation intensity spectra at different spatial scales under warming conditions[J]. Chinese Science Bulletin, 2013, 58(12): 1385-1394.
[41] 陈思宇, 黄建平, 付强, 等. 气溶胶对我国中东部地区秋季降水的影响[J]. 热带气象学报, 2012, 28(3): 339-347.
  [ Chen Siyu, Huang Jianping, Fu Qiang, et al. Effects of aerosols on autumn precipitation over mid-eastern china[J]. Journal of Tropical Meteorology, 2012, 28(3): 339-347. ]
[42] 陈晓燕, 尚可政, 王式功, 等. 近50年中国不同强度降水日数时空变化特征[J]. 干旱区研究, 2010, 27(5): 766-772.
  [ Chen Xiaoyan, Shang Kezheng, Wang Shigong, et al. Analysis on the spatiotemporal characteristics of precipitation under different intensities in China in recent 50 years[J]. Arid Zone Research, 2010, 27(5): 766-772. ]
[43] Liu B H, Xu M, Henderson M, et al. Observed trends of precipitation amount, frequency, and intensity in China, 1960-2000[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D8): D08103.
Outlines

/