Weather and Climate

Spatial and temporal evolution characteristics of different grades of cold days in Qinghai Province

  • CAI Yuqin ,
  • QI Donglin ,
  • WANG Liefu ,
  • LI Haifeng ,
  • ZHANG Deqin
Expand
  • 1. Golmud Meteorological Bureau, Golmud 816099, Qinghai, China
    2. Qinghai Key Laboratory of Disaster Preventing and Reducing, Xining 810001, Qinghai, China
    3. Qinghai Institute of Meteorological Science, Xining 810001, Qinghai, China
    4. Qinghai Dulan County Meteorological Bureau, Dulan 816100, Qinghai, China

Received date: 2023-09-05

  Revised date: 2023-11-27

  Online published: 2024-05-29

Abstract

Based on the daily minimum temperature measured at 42 meteorological stations in Qinghai Province from 1961 to 2019, the spatial and temporal evolution of different grades of cold days (extreme cold, extremely cold, severe cold, major cold, minor cold, light cold, slightly cold, cool) were analyzed. The results showed that: (1) From 1961 to 2019, the number of cold days in Qinghai Province gradually increased with decreasing levels, mainly dominated by slightly cold days. The total number of cold days showed an overall decreasing trend, with a significant rapid decrease occurring in 1995. The decrease in total cold days was mainly caused by the reduction in extremely cold days. After the climate abrupt change in 1997, the trends of severe cold, major cold, minor cold, light cold, slightly cold, and total cold days decreased, while the trend of extremely cold days increased. The trends of extreme cold and cool days decreased and increased respectively, with a distribution roughly equal. (2) Qinghai Province exhibits significant spatial differences in cold days, with the total number of cold days gradually increasing with altitude, and the trends of higher-level cold days are more pronounced. As the level of coldness decreases, the trends of increase and decrease develop towards lower latitudes and areas with relatively lower altitudes. (3) The numbers of extreme cold, extremely cold, severe cold, light cold, slightly cold, and total cold days gradually decrease with increasing annual mean temperature, while the numbers of major cold, minor cold, and cool days gradually increase with increasing annual mean temperature. (4) Except for severe cold days, the numbers of other levels of cold days in Qinghai Province show persistence, and the downward trend will continue in the future, but the strength of persistence varies.

Cite this article

CAI Yuqin , QI Donglin , WANG Liefu , LI Haifeng , ZHANG Deqin . Spatial and temporal evolution characteristics of different grades of cold days in Qinghai Province[J]. Arid Zone Research, 2024 , 41(5) : 742 -752 . DOI: 10.13866/j.azr.2024.05.03

References

[1] IPCC AR5. Intergovernmental Panelon Climate Change 2013 Fifth Assessment Report (AR5)[R]. London: Cambridge University Press, Cambridge, UK, 2013.
[2] 陈晓晨, 徐影, 姚遥. 不同升温阈值下中国地区极端气候事件变化预估[J]. 大气科学, 2015, 39(6): 1123-1135.
  [Chen Xiaochen, Xu Ying, Yao Yao. Changes in climate extremes over China in a 2 ℃, 3 ℃, and 4 ℃ warmer World[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(6): 1123-1135.]
[3] 杨金虎, 沈永平, 王鹏祥, 等. 中国西北近45 a来极端低温事件及其对区域增暖的响应[J]. 冰川冻土, 2007, 29(4): 536-542.
  [Yang Jinhu, Shen Yongping, Wang Pengxiang, et al. Extreme low temperature events in Northwest China and their response to regional warming in the recent 45 years[J]. Journal of Glaciology and Geocryology, 2007, 29(4): 536-542.]
[4] 祁如英, 王启兰, 申红艳. 青海草本植物物候期变化与气象条件影响分析[J]. 气象科技, 2006, 34(3): 306-310.
  [Qi Ruying, Wang Qilan, Sheng Hongyan. Analysis of phenological-phase variation of herbage plants over Qinghai and impact of meteorological conditions[J]. Meteorological Science and Technology, 2006, 34(3): 306-310.]
[5] 张调风, 李林, 刘宝康, 等. 基于SPEI指数的近52年青海省农(牧)作物生长季干旱动态格局分析[J]. 生态学杂志, 2014, 33(8): 2221-2227.
  [Zhang Tiaofeng, Li Lin, Liu Baokang, et al. Dynamic pattern of drought in crop (grass) growth season over Qinghai Province during last 52 years, based on standardized precipitation evapotranspiration index[J]. Chinese Journal of Ecology, 2014, 33(8): 2221-2227.]
[6] 孔锋. 1961—2017年中国不同等级寒冷天气日数时空演变特征[J]. 长江流域资源与环境, 2020, 29(1): 150-163.
  [Kong Feng. Spatial and temporal variation characteristics of cold weather days with different grades in China from 1961 to 2017[J]. Resources and Environment in the Yangtze Basin, 2020, 29(1): 150-163.]
[7] 安彬, 肖薇薇, 朱妮, 等. 1960—2017年黄土高原不同等级寒冷日数时空演变特征[J]. 水土保持研究, 2023, 30(1): 327-335.
  [An Bin, Xiao Weiwei, Zhu Ni, et al. Spatiotemporal evolution characteristics of cold days with different grades in the Loess Plateau during 1960-2017[J]. Research of Soil and Water Conservation, 2023, 30(1): 327-335.]
[8] 马柱国, 符淙斌, 任小波, 等. 中国北方年极端温度的变化趋势与区域增暖的联系[J]. 地理学报, 2003, 58(增刊): 11-20.
  [Ma Zhuguo, Fu Congbin, Ren Xiaobo, et al. Trend of annual extreme temperature and its relationship to regional warming in northern China[J]. Acta Geographica Sinica, 2003, 58(Suppl. ): 11-20.]
[9] 翟盘茂, 潘晓华. 中国北方近50年温度和降水极端事件变化[J]. 地理学报, 2003, 58(增刊): 1-10.
  [Zhai Panmao, Pan Xiaohua. Change in extreme temperature and precipitation over northern China during the second half of the 20th century[J]. Acta Geographica Sinica, 2003, 58(Suppl. ): 1-10.]
[10] 陈少勇, 王劲松, 任燕, 等. 近49年中国西北地区极端低温事件的演变特征[J]. 高原气象, 2011, 30(5): 1266-1273.
  [Chen Shaoyong, Wang Jinsong, Reng Yan, et al. The evaluative characteristics of the extreme lowest temperature of Northwest China in recent 49 years[J]. Plateau Meteorology, 2011, 30(5): 1266-1273.]
[11] 邬晓丹, 罗敏, 孟凡浩, 等. 气候暖湿化背景下新疆极端气候事件时空演变特征分析[J]. 干旱区研究, 2022, 39(6): 1695-1705.
  [Wu Xiaodan, Luo Min, Meng Fanhao, et al. New characteristics of spatio-temporal evolution of extreme climate events in Xinjiang under the background of warm and humid climate[J]. Arid Zone Research, 2022, 39(6): 1695-1705.]
[12] 姜雨彤, 郭宁, 马勇星, 等. 1960—2016年陕西省极端气温的时空变化研究[J]. 水资源与水工程学报, 2021, 32(4): 124-131.
  [Jiang Yutong, Guo Ning, Ma Yongxing, et al. Spatio-temporal variation of extreme temperature in Shanxi Province during 1960-2016[J]. Journal of Water Resources & Water Engineering, 2021, 32(4): 124-131.]
[13] 徐洁, 毕宇珠, 雷秋良, 等. 1961—2020年宁夏地区极端气候变化趋势及影响因素分析[J]. 中国农业资源与区划, 2022, 43(12): 159-171.
  [Xu Jie, Bi Yuzhu, Lei Qiuliang, et al. Analysis of extreme climate change trends and influencing factors from 1961 to 2020 in Ningxia Hui Autonomous Region, China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(12): 159-171.]
[14] 黄浩, 张勃, 马尚谦, 等. 甘肃河东地区近30年季节极端气温指数变化与环流影响[J]. 高原气象, 2021, 40(1): 133-144.
  [Huang Hao, Zhang Bo, Ma Shangqian, et al. Seasonal variation characteristics of extreme temperature index and its influence on circulation in Hedong area of Gansu Province in the past 30 years[J]. Plateau Meteorology, 2012, 40(1): 133-144.]
[15] 李谢辉, 刘子堂. 四川盆地极端气温事件时空变化特征及未来趋势[J]. 水土保持研究, 2023, 30(1): 264-273.
  [Li Xiehui, Liu Zitang. Spatiotemporal change characteristics and future trends of extreme temperature events in Sichuan Basin[J]. Research of Soil and Water Conservation, 2023, 30(1): 264-273.]
[16] 鲁同所, 王红宾, 雷阳, 等. 拉萨市近50年极端气温的时间特征分析[J]. 昆明理工大学学报(自然科学版), 2021, 46(1): 115-125.
  [Lu Tongsuo, Wang Hongbin, Lei Yang, et al. Temporal characteristics of extreme temperature events during the recent 50 years in Lhasa[J]. Journal of Kunming University of Science and Technology (Natural Sciences), 2021, 46(1): 115-125.]
[17] 侯承志, 黄丹青, 桂东伟, 等. 1961—2019年中国北方沙漠沙地极端气候变化特征及其影响因素[J]. 地理科学, 2023, 43(8): 1495-1505.
  [Hou Chengzhi, Huang Danqing, Gui Dongwei, et al. Spatiotemporal variations of climate extremes and influential factors in deserts and sandy fields of northern China from 1961 to 2019[J]. Scientia Geographica Sinica, 2023, 43(8): 1495-1505.]
[18] 高文德, 王昱, 李宗省, 等. 基于极端气温指数的高寒内流区升温特征分析[J]. 高原气象, 2022, 41(3): 749-761.
  [Gao Wende, Wang Yu, Li Zongxing, et al. An analysis of the heating up regulation in the endorheic area in alpine region based on the extreme temperature index[J]. Plateau Meteorology, 2022, 41(3): 749-761.]
[19] 蒋帅, 张黎, 景元书, 等. 1981—2015年中国区域极端气候事件的时空分布特征[J]. 水土保持研究, 2023, 30(6): 295-306.
  [Jiang Shuai, Zhang Li, Jing Yuanshu, et al. Spatial and temporal distribution characteristics of regional extreme climate events in China from 1981 to 2015[J]. Research of Soil and Water Conservation, 2023, 30(6): 295-306.]
[20] 冯晓莉, 多杰卓么, 李万志, 等. 1961—2018年青海高原极端气温指数时空变化特征[J]. 干旱气象, 2021, 39(1): 28-37.
  [Feng Xiaoli, Duo Jiezhuome, Li Wanzhi, et al. Spatiotemporal variations of extreme temperature indices over Qinghai Plateau during 1961-2018[J]. Journal of Arid Meteorology, 2021, 39(1): 28-37.]
[21] 罗静, 郑国强, 刘峰贵, 等. 青海高原1961—2019年暖冷昼(夜)日数比变化特征研究[J]. 自然灾害学报, 2021, 30(5): 100-111.
  [Luo Jing, Zheng Guoqiang, Liu Fenggui, et al. Study on the variation characteristics of the warm-cold day (night) days ratio in Qinghai Plateau from 1961 to 2019[J]. Journal of Natural Disasters, 2021, 30(5): 100-111.]
[22] 江田汉, 邓莲堂. Hurst指数估计中存在的若干问题——以在气候变化研究中的应用为例[J]. 地理科学, 2004, 24(2): 177-182.
  [Jiang Tianhan, Deng Liantang. Some problems in estimating a Hurst exponent: A case study of applications to climatic change[J]. Scientia Geographica Sinica, 2004, 24(2): 177-182.]
[23] 郑然, 李栋梁, 蒋元春, 等. 全球变暖背景下青藏高原气温变化的新特征[J]. 高原气象, 2015, 34(6): 1531-1539.
  [Zheng Ran, Li Dongliang, Jiang Yuanchun, et al. New characteristics of temperature change over Qinghai-Xizang Plateau on the background of global warming[J]. Plateau Meteorology, 2015, 34(6): 1531-1539.]
[24] 丁一汇, 张莉. 青藏高原与中国其他地区气候突变时间的比较[J]. 大气科学, 2008, 32(4): 794-805.
  [Ding Yihui, Zhang Li. Intercomparison of the time for climate abrupt change bet ween the Tibetan Plateau and other regions in China[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 794-805.]
[25] 汪宝龙, 张明军, 魏军林, 等. 西北地区近50年气温和降水极端事件的变化特征[J]. 自然资源学报, 2012, 27(10): 1720-1733.
  [Wang Baolong, Zhang Mingjun, Wei Junlin, et al. The change in extreme events of temperature and precipitation over Northwest China in recent 50 years[J]. Journal of Natural Resources, 2012, 27(10): 1720-1733.]
[26] 刘彩红, 余锦华, 李红梅. RCPs情景下未来青海高原气候变化趋势预估[J]. 中国沙漠, 2015, 35(5): 1353-1361.
  [Liu Caihong, Yu Jinhua, Li Hongmei. Projected climate change under the RCPs scenario in the Qinghai Plateau[J]. Journal of Desert Research, 2015, 35(5): 1353-1361.]
[27] 张春秀, 韦淑侠. 气候变化对青海海东农业的影响[J]. 北京农业, 2013, 33(3): 152-153.
  [Zhang Chunxiu, Wei Shuxia. The impact of climate change on agriculture in Haidong, Qinghai[J]. Beijing Agriculture, 2013, 33(3): 152-153.]
[28] 刘彩红, 祁贵明, 戴升. 气候变化对青海海东农业区的影响评估与适应对策[J]. 安徽农业科学, 2011, 39(11): 6608-6610, 6613.
  [Liu Caihong, Qi Guiming, Dai Sheng. Impact assessment of climate change on Haidong agricultural region in Qinghai and its adaptive countermeasures[J]. Journal of Anhui Agricultural Sciences, 2011, 39(11): 6608-6610, 6613.]
[29] 李红梅, 颜亮东, 温婷婷, 等. 三江源地区气候变化特征及其影响评估[J]. 高原气象, 2022, 41(2): 306-316.
  [Li Hongmei, Yan Liangdong, Wen Tingting, et al. Characteristics of climate change and its impact assessment in the Three-River Regions[J]. Plateau Meteorology, 2022, 41(2): 306-316.]
[30] 汪青春, 李林, 李栋梁, 等. 青海高原多年冻土对气候增暖的响应[J]. 高原气象, 2005, 24(5): 708-713.
  [Wang Qingchun, Li Lin, Li Dongliang, et al. Response of permafrost over Qinghai Plateau to climate warming[J]. Plateau Meteorology, 2005, 24(5): 708-713.]
Outlines

/