Weather and Climate

Properties of aerosol scattering and its influencing factors in semiarid areas of Inner Mongolia

  • YE Hu ,
  • PEI Hao ,
  • JIANG Yanfeng ,
  • NA Qing ,
  • ZHANG Liwei
Expand
  • 1. Inner Mongolia Service Center of Meteorology, Hohhot 010051, Inner Mongolia, China
    2. Inner Mongolia Desert Ecological Meteorological Center, Hohhot 010051, Inner Mongolia, China
    3. Inner Mongolia Meteorological Bureau, Hohhot 010051, Inner Mongolia, China
    4. Inner Mongolia Meteorological Science Research Institute, Hohhot 010051, Inner Mongolia, China
    5. Inner Mongolia Meteorological Data Center, Hohhot 010051, Inner Mongolia, China
    6. Xilin Gol League Meteorological Bureau, Xilinhot 026000, Inner Mongolia, China

Received date: 2023-08-29

  Revised date: 2023-11-06

  Online published: 2024-05-29

Abstract

From observational data of scattering coefficients, the mass concentrations of aerosols and pollutants, and meteorological elements, collected from July 9, 2020 to July 8, 2023 in Xilinhot, the characteristics of aerosol scattering coefficients—including the variation over time, probability density distribution, and correlation with different types of aerosols and meteorological impact factors—are studied. Consequently, the scattering coefficient levels are classified. The results show that: (1) the overall level of aerosol scattering is relatively low, but the transport of dust aerosol in spring and the high frequency of temperature inversions in winter and at night may increase aerosol scattering. (2) The smaller the aerosol, the higher the correlation between aerosols and scattering coefficients, with the correlation coefficients following the order BC>PM2.5>PM10, although seasonal differences are observed. In addition, NO2 is an important factor in increasing scattering in autumn, whereas SO2 contributes to scattering in summer, autumn, and winter. (3) The increases in correlation coefficients are considered as the contribution rates of current meteorological factors to scattering coefficients, with contribution rates of between 1% and 2%.

Cite this article

YE Hu , PEI Hao , JIANG Yanfeng , NA Qing , ZHANG Liwei . Properties of aerosol scattering and its influencing factors in semiarid areas of Inner Mongolia[J]. Arid Zone Research, 2024 , 41(5) : 730 -741 . DOI: 10.13866/j.azr.2024.05.02

References

[1] 唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 北京: 高等教育出版社, 2006.
  [Tang Xiaoyan, Zhang Yuanhang, Shao Min. Atmospheric Environmental Chemistry[M]. Beijing: Higher Education Press, 2006.]
[2] 崔芬萍. 南京地区大气气溶胶光学特性的观测研究[D]. 南京: 南京信息工程大学, 2017.
  [Cui Fenping. Observational Study on Optical Properties of Aerosol in Nanjing[D]. Nanjing: Nanjing University of Information Science & Technology, 2017.]
[3] Kawecki S, Henebry G M, Steiner A L. Effects of urban plumeaerosols on a mesoscale convective system[J]. Journal of the Atmospheric Sciences, 2016, 73(12): 4641-4660.
[4] 李德平, 程兴宏, 孙治安, 等. 北京不同区域气溶胶辐射效应[J]. 应用气象学报, 2018, 29(5): 609-618.
  [Li Deping, Cheng Xinghong, Sun Zhi'an, et al. Radiative effects of aerosols in different areas of Beijing[J]. Journal of Aoolied Meteorological Science, 2018, 29(5): 609-618.]
[5] Miller R L, Tegen I. Climate response to soil dust aerosols[J]. Journal of Climate, 1998, 11(12): 3247-3267.
[6] Miller R L, Tegen I. Radiative forcing of a tropical direct circulation by soil dust aerosols[J]. Journal of the Atmospheric Sciences, 1999, 56(14): 2403-2433.
[7] 王开燕, 邓雪娇, 李海洋, 等. 不同天气状况下气溶胶散射系数变化特征分析[J]. 气象与环境科学, 2014, 37(2): 29-32.
  [Wang Kaiyan, Deng Xuejiao, Li Haiyang, et al. Variation characteristics analysis of aerosol scattering coefficient in different weather conditions[J]. Meteorological and Environmental Sciences, 2014, 37(2): 29-32.]
[8] 杨寅山, 倪长健, 邓也, 等. 成都市冬季大气消光系数及其组成的特征研究[J]. 环境科学学报, 2019, 39(5): 1425-1432.
  [Yang Yinshan, Ni Changjian, Deng Ye, et al. Characteristics of atmospheric extinction coefficient and its components in winter in Chengdu[J]. Acta Scientiae Circumstantiae, 2019, 39(5): 1425-1432.]
[9] 周变红, 曹夏, 张容端, 等. 宝鸡高新区冬季大气消光系数及其组成特征[J]. 大气与环境光学学报, 2020, 15(3): 196-206.
  [Zhou Bianhong, Cao Xia, Zhang Rongduan, et al. Characteristics of atmospheric extinction coefficient and its components in Baoji high-tech zone in winter[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(3): 196-206.]
[10] 时政, 邰菁菁, 龚克坚, 等. 南京北郊秋冬季气溶胶散射特征研究[J]. 生态环境学报, 2019, 28(3): 531-539.
  [Shi Zheng, Tai Jingjing, Gong Kejian, et al. Observation of aerosol scattering properties during autumn and winter in the northern suburbs of Nanjing[J]. Ecology and Environmental Sciences, 2019, 28(3): 531-539.]
[11] 宋丹林, 陶俊, 张普, 等. 成都城区颗粒物消光系数特征及其与PM2.5的关系[J]. 中国科学院大学学报, 2013, 30(6): 757-762.
  [Song Danlin, Tao Jun, Zhang Pu, et al. Seasonal characterization of particle extinction coefficient and its relation with PM2.5 mass concentration in Chengdu[J]. Journal of University of Chinese Academy of Sciences, 2013, 30(6): 757-762.]
[12] 王天舒, 牛生杰. 内蒙古东部春季三类沙尘天气气溶胶散射系数及其与PM10、能见度相关性分析[J]. 大气科学, 2017, 41(1): 121-131.
  [Wang Tianshu, Niu Shengjie. Dust aerosol scattering coefficient under three types of sand storm in eastern Inner Mongolia in the spring and its correlations with PM10 and visibility[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(1): 121-131.]
[13] 颜鹏, 刘桂清, 周秀骥, 等. 上甸子秋冬雾霾期间气溶胶光学特性[J]. 应用气象学报, 2010, 21(3): 257-265.
  [Yan Peng, Liu Guiqing, Zhou Xiuji, et al. Characteristics of aerosol optical properties during haze and fog episode at Shangdianzi in northern China[J]. Journal of Aoolied Meteorological Science, 2010, 21(3): 257-265.]
[14] 周旭, 张镭, 陈丽晶, 等. 沙尘暴过程中沙尘气溶胶对气象场的影响[J]. 高原气象, 2017, 36(5): 1422-1432.
  [Zhou Xu, Zhang Lei, Chen Lijing, et al. Influence of the dust aerosols on meteorological fields during dust storm[J]. Plateau Meteorology, 2017, 36(5): 1422-1432.]
[15] 彭艳梅, 王舒, 肖高翔, 等. 塔克拉玛干沙漠腹地塔中地区大气气溶胶散射系数影响因子[J]. 中国沙漠, 2018, 38(2): 384-392.
  [Peng Yanmei, Wang Shu, Xiao Gaoxiang, et al. Impact factors of atmospheric aerosol scattering coefficient in the Tazhong Area if the Taklimakan Desert[J]. Journal of Desert Research, 2018, 38(2): 384-392.]
[16] 陈学刚, 魏疆, 任泉, 等. 乌鲁木齐冬春季气溶胶散射吸收特性的差异性及其影响因素[J]. 干旱区研究, 2014, 31(7): 591-595.
  [Chen Xuegang, Wei Jiang, Ren Quan, et al. Scattering/absorptin properties of aerosol and its affecting factors over Urumqi in spring and winter[J]. Arid Zine Research, 2014, 31(7): 591-595.]
[17] 姚青, 韩素芹, 蔡子颖, 等. 天津城区春季大气气溶胶消光特性研究[J]. 中国环境科学, 2012, 32(5): 795-802.
  [Yao Qing, Han Suqin, Cai Ziying, et al. Study on characteristic of aerosol extinction at Tianjin City in the spring[J]. China Environmental Science, 2012, 32(5): 795-802.]
[18] 徐冉, 张碧辉, 安林昌, 等. 2000—2021年中国沙尘传输路径特征及气象成因[J]. 中国环境科学, 2023, 43(9): 4450-4458.
  [Xu Ran, Zhang Bihui, An Linchang, et al. Analysis of sand and dust storm transport paths characteristics and meteorological causes in China from 2000 to 2021[J]. China Environmental Science, 2023, 43(9): 4450-4458.]
[19] 贾瑞, 李君, 祝清哲, 等. 中国西北地区气溶胶的三维分布特征及其成因[J]. 中国沙漠, 2021, 41(3): 34-43.
  [Jia Rui, Li Jun, Zhu Qingzhe, et al. Three-dimensional distribution and formation causes of aerosols over Northwest China[J]. Journal of Desert Research, 2021, 41(3): 34-43.]
[20] 周海军, 文秀, 刘涛, 等. 2019年锡林浩特市大气污染特征分析[J]. 内蒙古大学学报(自然科学汉文版), 2020, 49(6): 475-482.
  [Zhou Haijun, Wen Xiu, Liu Tao, et al. Air pollution characteristics of Xilinhot in 2019[J]. Journal of Inner Mongolia Normal University (Natural Science Editon), 2020, 49(6): 475-482.]
[21] 刑丽珠, 张方敏, 黄进, 等. 1961—2018年内蒙古6级及以上大风日数时空变化特征[J]. 干旱区地理, 2021, 44(5): 1290-1298.
  [Xing Lizhu, Zhang Fangmin, Huang Jin, et al. Spatial and temporal changes of high wind days over category 6 and above in Inner Mongolia from 1961 to 2018[J]. Arid Land Geography, 2021, 44(5): 1290-1298.]
[22] 王慧清, 裴浩, 孙玉, 等. 内蒙古典型草原2010—2021年黑碳气溶胶浓度变化及影响因素分析[J]. 中国环境科学, 2024, 44(1): 83-92.
  [Wang Huiqing, Pei Hao, Sun Yu, et al. Analysis of black carbon aerosol concentration changes and influencing factors in typical steppe of Inner Mongolia from 2010 to 2021[J]. China Environmental Science, 2024, 44(1): 83-92.]
[23] 齐冰, 杜荣光, 徐宏辉, 等. 杭州市区大气气溶胶散射特性观测分析[J]. 高原气象, 2014, 33(1): 277-284.
  [Qi Bing, Du Rongguang, Xu Honghui, et al. An observational study on aerosol scattering properties in urban site of Hangzhou[J]. Plateau Meteorology, 2014, 33(1): 277-284.]
[24] Li Y, Lei L, Sun J X, et al. Significant reductions in secondary aerosols after the three-year action plan in Beijing summer[J]. Environmental Science & Technology, 2023, 57(42): 15945-15955.
[25] 闫涵, 高会旺, 姚小红, 等. 沙尘传输路径上气溶胶浓度与干沉降通量的粒径分布特征[J]. 气候与环境研究, 2012, 17(2): 205-214.
  [Yan Han, Gao Huiwang, Yao Xiaohong, et al. Size dependent mass and dry deposition fluxes of atmospheric aerosols along dust transport routes[J]. Climate and Envionmental Research, 2012, 17(2): 205-214.]
[26] 封秋娟, 牛生杰, 李培仁, 等. 山西夏季气溶胶散射特征的飞机观测研究[J]. 气候与环境研究, 2019, 24(4): 482-492.
  [Feng Qiujuan, Niu Shengjie, Li Peiren, et al. Aircraft measurements of the scattering properties of aerosols in Shanxi Province in summer[J]. Climatic and Environmental Research, 2019, 24(4): 482-492.]
[27] 中国环境监测总站, 中国环境科学研究院, 大连市环境监测中心, 等. 环境空气质量指数(AQI)技术规定(试行)(HJ633—2012)[S]. 北京: 中国环境科学出版社, 2012.
  [China National Environmental Monitoring Center, Chinese Research Academy of Environmental Sciences, Dalian Environmental Monitoring Center, et al. Technical Regulation on Ambient Air Quality Index (on trial) (HJ633—2012)[S]. Beijing: China Environmental Press, 2012.]
[28] 章秋英, 牛生杰, 沈建国, 等. 半干旱区气溶胶散射特性研究[J]. 中国沙漠, 2008, 28(4): 755-761.
  [Zhang Qiuying, Niu Shengjie, Shen Jianguo, et al. Observational study on aerosol scattering properties in semiarid area[J]. Journal of Desert Research, 2008, 28(4): 755-761.]
Outlines

/