Land and Water Resources

Elevational variations in ecological soil C, N, and P stoichiometry among five typical vegetation types in the Qilian Mountains

  • BAI Lili ,
  • WANG Wenying ,
  • Dequelamu ,
  • LIU Yanfang ,
  • DENG Yanfang
Expand
  • 1. College of Geographical Science, Qinghai Normal University, Xining 810008, Qinghia, China
    2. College of Life Science, Qinghai Normal University, Xining 810008, Qinghia, China
    3. Provincial Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization in Qinghai-Tibet Plateau, Xining 810008, Qinghai, China
    4. Qinghai Service and Guarantee Center of Qilian Mountains National Park, Xining 810008, Qinghia, China

Received date: 2023-08-10

  Revised date: 2023-10-23

  Online published: 2024-04-01

Abstract

Five typical vegetation types (i.e., coniferous forests, meadow grasslands, alpine shrubs, alpine meadows, and sparse vegetations of limestone flat) along a vertical belt of the Qilian Mountains were selected to explore the spatial elevational patterns of soil carbon, nitrogen, and phosphorus and their stoichiometric ratios. Results showed that: (1) The contents of total carbon (C), nitrogen (N), and phosphorus (P) at the 0-40 cm depth were 15.33-83.46, 1.63-7.76, and 0.41-0.66 mg·kg-1, respectively. Soil C and N decreased gradually with increasing altitudes, following the order coniferous forests>meadow steppes>alpine shrubs>alpine meadows>sparse vegetations of limestone flat. Soil P in alpine scrubs was significantly higher than that in alpine meadows, but the other three vegetations showed no significant difference. (2) The contents of $\mathrm{NH}_{4}^{+}-\mathrm{N}$, $\mathrm{NO}_{3}^{-}-\mathrm{N}$ and available phosphorus at the 0-40 cm depth were 11.01-14.73, 2.78-12.46, and 4.35-13.57 mg·kg-1, respectively. Ammonium was the main inorganic nitrogen form in all vegetation types. The nitrite content decreased gradually with increasing altitude. The content of soil available phosphorus was higher in sparse vegetations of limestone flats. (3) The ratios of soil C:N, C:P, and N:P at the 0-40 cm depth were 9.52-10.11, 29.89-320.24, and 3.18-29.63, respectively. Soil C:N decreased with elevation. Soil C:P and N:P were significantly lower in the soil of sparse vegetations of the limestone flat than in other vegetations, indicating that carbon and nitrogen were the limiting nutrients in the limestone flat. By contrast, the limestone flat was in a phosphorus-rich state. Elevational variations in soil C, N, and P contents and their stoichiometric ratios reflect the joint control of multiple environmental factors, thereby affecting the biochemical processes of soil C, N, and P.

Cite this article

BAI Lili , WANG Wenying , Dequelamu , LIU Yanfang , DENG Yanfang . Elevational variations in ecological soil C, N, and P stoichiometry among five typical vegetation types in the Qilian Mountains[J]. Arid Zone Research, 2024 , 41(3) : 444 -455 . DOI: 10.13866/j.azr.2024.03.09

References

[1] 盛茂银, 刘洋, 熊康宁. 中国南方喀斯特石漠化演替过程中土壤理化性质的响应[J]. 生态学报, 2013, 33(19): 6303-6313.
  [Sheng Maoyin, Liu Yang, Xiong Kangning. Responses of soil physicochemical properties to karst rocky desertification in southern China[J]. Acta Ecologica Sinica, 2013, 33(19): 6303-6313.]
[2] 吴丹, 温晨, 卫伟, 等. 黄土高原小流域不同植物群落土壤生态化学计量的垂直变化特征[J]. 广西植物, 2022, 7(7): 1-16.
  [Wu Dan, Wen Chen, Wei Wei, et al. Soil ecological stoichiometry of different plant communities in a small watershed on the Loess Plateau[J]. Guihaia, 2022, 7(7): 1-16.]
[3] Zhang Y Q, Ai J J, Sun Q W, et al. Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China[J]. Catena, 2021, 196: 104872.
[4] Bin H, Li Q, Zhang P, et al. effects of Elevation on ecological stoichiometry of plant leaves, litter, and soils in pseudotsuga sinensis forest in the Karst Mountain region, Southwest China[J]. Journal of Soil Science and Plant Nutrition, 2022, 22(6): 3582-3597.
[5] Njeru C M, Ekesi S, Mohamed S A, et al. Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountains ecosystem[J]. Geoderma Regional, 2017, 10: 29-38.
[6] 任玉连, 陆梅, 曹乾斌, 等. 南滚河国家级自然保护区典型植被类型土壤有机碳及全氮储量的空间分布特征[J]. 北京林业大学学报, 2019, 41(11): 104-115.
  [Ren Yulian, Lu Mei, Cao Qianbin, et al. Spatial distribution characteristics of soil organic carbon and total nitrogen reserves of typical vegetation types in Nantumhe National Nature Reserve[J]. Journal of Beijing Forestry University, 2019, 41(11): 104-115.]
[7] 张一帆, 武海涛, 刘吉平, 等. 长白山地土壤碳、氮、磷含量及生态化学计量垂直特征[J]. 环境生态学, 2023, 5(1): 75-81.
  [Zhang Yifan, Wu Haitao, Liu Jiping, et al. Vertical characteristics of soil carbon, nitrogen and phosphorus content and ecological stoichiometry in Changbai Mountains[J]. Environmental Ecology, 2023, 5(1): 75-81.]
[8] 李丹维, 王紫泉, 田海霞, 等. 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征[J]. 土壤学报, 2017, 54(1): 160-170.
  [Li Danwei, Wang Ziquan, Tian Haixia, et al. Soil carbon, nitrogen and phosphorus contents and ecological stoichiometric characteristics at different elevations in Taibai Mountains[J]. Acta Pedologica Sinica, 2017, 54(1): 160-170.]
[9] 吴昊, 邹梦茹, 王思芊, 等. 秦岭松栎林土壤生态化学计量特征及其对海拔梯度的响应[J]. 生态环境学报, 2019, 28(12): 2323-2331.
  [Wu Hao, Zou Mengru, Wang Siqian, et al. Soil ecological stoichiometric characteristics of pine oak forest and its response to elevation gradient in Qinling Mountains[J]. Ecology and Environmental Sciences, 2019, 28(12): 2323-2331.]
[10] 杨学亭, 樊军, 盖佳敏, 等. 祁连山不同类型草地的土壤理化性质与植被特征[J]. 应用生态学报, 2022, 33(4): 878-886.
  [Yang Xueting, Fan Jun, Gai Jiamin, et al. Soil physicochemical properties and vegetation characteristics of different grassland types in the Qilian Mountains[J]. Chinese Journal of Applied Ecology, 2022, 33(4): 878-886.]
[11] 马剑, 刘贤德, 金铭, 等. 祁连山5种典型灌丛土壤生态化学计量特征[J]. 西北植物学报, 2021, 41(8): 1391-1400.
  [Ma Jian, Liu Xiande, Jin Ming, et al. Soil ecological stoichiometry of five typical shrubs in Qilian Mountains[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(8): 1391-1400.]
[12] 江胜国. 国内土壤容重测定方法综述[J]. 湖北农业科学, 2019, 58(2): 82-86.
  [Jiang Shengguo. Review of soil bulk density measurement methods in China[J]. Hubei Agricultural Sciences, 2019, 58(2): 82-86.]
[13] 刘攀. 尿素配施脲酶/硝化抑制剂对三江源区退化高寒草甸氮转化的影响及作用机理研究[D]. 西宁: 青海师范大学, 2021.
  [Liu Pan. Influences of Urea Combined with Urease/Nitrification Inhibitor on Nitrogen Transformation and Its Mechanism Research of Degraded Alpine Meadow in the Source Region of Three Rivers[D]. Xining: Qinghai Normal University, 2021.]
[14] 杨阳, 章妮, 陈克龙, 等. 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应[J]. 草地学报, 2021, 29(5): 1043-1052.
  [Yang Yang, Zhang Ni, Chen Kelong, et al. Responses of soil physicochemical properties and microbial community characteristics to simulated precipitation in Alpine grassland of Qinghai Lake, China[J]. Acta Grassland Sinica, 2021, 29(5): 1043-1052.]
[15] 刘西刚, 王勇辉, 焦黎. 夏尔希里自然保护区草地表层土壤理化性质与海拔高度的关系[J]. 生态与农村环境学报, 2019, 35(6): 773-780.
  [Liu Xigang, Wang Yonghui, Jiao Li. Relationship between physical and chemical properties of grassland surface soil and altitude in Xiarhili Nature Reserve[J]. Journal of Ecology and Rural Environment, 2019, 35(6): 773-780.]
[16] 李红林, 贡璐, 朱美玲, 等. 塔里木盆地北缘绿洲土壤化学计量特征[J]. 土壤学报, 2015, 52(6): 1345-1355.
  [Li Honglin, Gong Lu, Zhu Meiling, et al. Stoichiometric characteristics of oasis soil in the northern margin of Tarim Basin[J]. Acta Pedologica Sinica, 2015, 52(6): 1345-1355.]
[17] 平翠枝, 红梅, 王文东, 等. 不同耕作方式对黑土区农田土壤物理特性的影响[J]. 中国农学通报, 2020, 36(7): 83-89.
  [Ping Cuizhi, Hong Mei, Wang Wendong, et al. Effects of different tillage methods on soil physical properties in black soil area[J]. Chinese Agricultural Science Bulletin, 2020, 36(7): 83-89.]
[18] 李晓英, 周惠民, 李畅, 等. 城市不同功能区绿地土壤理化性质及微生物生物量的分布特征[J]. 土壤, 2021, 53(4): 874-880.
  [Li Xiaoying, Zhou Huimin, Li Chang, et al. Distribution characteristics of soil physical and chemical properties and microbial biomass in urban greenbelt with different functional areas[J]. Soils, 2021, 53(4): 874-880.]
[19] 张剑, 宿力, 王利平, 等. 植被盖度对土壤碳、氮、磷生态化学计量比的影响——以敦煌阳关湿地为例[J]. 生态学报, 2019, 39(2): 580-589.
  [Zhang Jian, Su Li, Wang Liping, et al. Effects of vegetation coverage on ecological stoichiometric ratios of soil carbon, nitrogen and phosphorus: A case study of Yangguan Wetland, Dunhuang, China[J]. Acta Ecologica Sinica, 2019, 39(2): 580-589.]
[20] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947.
  [Wang Shaoqiang, Yu Guirui. Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in ecosystems[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947.]
[21] 赵琼, 曾德慧. 陆地生态系统磷素循环及其影响因素[J]. 植物生态学报, 2005, 29(1): 153-163.
  [Zhao Qiong, Zeng Dehui. Phosphorus cycle and its influencing factors in terrestrial ecosystems[J]. Chinese Journal of Plant Ecology, 2005, 29(1): 153-163.]
[22] 刘倩, 王书丽, 邓邦良, 等. 武功山山地草甸不同海拔凋落物-土壤碳、氮、磷含量及其生态化学计量特征[J]. 应用生态学报, 2018, 29(5): 1535-1541.
  [Liu Qian, Wang Shuli, Deng Bangliang, et al. Contents of litter-soil carbon, nitrogen and phosphorus at different elevations and their ecological stoichiometric characteristics in Wugong Mountains meadow[J]. Chinese Journal of Applied Ecology, 2018, 29(5): 1535-1541.]
[23] 姚喜喜, 宫旭胤, 白滨, 等. 祁连山高寒牧区不同类型草地植被特征与土壤养分及其相关性研究[J]. 草地学报, 2018, 26(2): 371-379.
  [Yao Xixi, Gong Xuyin, Bai Bin, et al. Study on the relationship between vegetation characteristics and Soil nutrients of different grassland types in Alpine pastoral areas of Qilian Mountains[J]. Acta Agrestia Sinica, 2018, 26(2): 371-379.]
[24] 邓小军, 朱柳霏, 宋贤冲, 等. 猫儿山自然保护区不同林分类型土壤生态化学计量特征[J]. 土壤通报, 2022, 53(2): 366-373.
  [Deng Xiaojun, Zhu Liufei, Song Xianchong, et al. Soil ecological stoichiometry of different forest types in Mao’er Mountain Nature Reserve[J]. Chinese Journal of Soil Science, 2022, 53(2): 366-373.]
[25] 高海宁, 李彩霞, 孙小妹, 等. 祁连山北麓不同海拔土壤化学计量特征[J]. 中国沙漠, 2021, 41(1): 219-227.
  [Gao Haining, Li Caixia, Sun Xiaomei, et al. Soil stoichiometric characteristics at different elevations in the northern foot of Qilian Mountains[J]. Journal of Desert Research, 2021, 41(1): 219-227.]
[26] 郁国梁, 马紫荆, 吕自立, 等. 海拔和植物群落共同调节天山中段南坡巴伦台地区天然草场土壤化学计量特征[J]. 草业学报, 2023, 32(9): 68-78.
  [Yu Guoliang, Ma Zijing, Lyu Zili, et al. Altitude and plant community jointly regulate soil stoichiometry characteristics of natural grassland in the Baluntai area on the southern slope of the middle Tianshan Mountains, China[J]. Acta Prataculturae Sinica, 2023, 32(9): 68-78.]
[27] 胡亚伟, 孙若修, 申明爽, 等. 晋西黄土区土地利用方式对土壤C: N: P化学计量特征及土壤理化性质的影响[J]. 干旱区研究, 2021, 38(4): 990-999.
  [Hu Yawei, Sun Ruoxiu, Shen Mingshuang, et al. Effects of land use on soil C:N:P stoichiometry and soil physical and chemical properties in the Loess region of Western Shanxi Province[J]. Arid Zone Research, 2021, 38(4): 990-999.]
[28] Cheng M, An S S. Response of soil nitrogen, phosphorus and organic matter to vegetation succession on the Loess Plateau of China[J]. Journal of Arid Land, 2015, 7(2): 216-223.
[29] 阎欣, 安慧, 刘任涛. 荒漠草原沙漠化对土壤物理和化学特性的影响[J]. 土壤, 2019, 51(5): 1006-1012.
  [Yan Xin, An Hui, Liu Rentao. Effects of desertification on soil physical and chemical properties in desert steppe[J]. Soils, 2019, 51(5): 1006-1012.]
[30] 肖烨, 商丽娜, 黄志刚, 等. 吉林东部山地沼泽湿地土壤碳、氮、磷含量及其生态化学计量学特征[J]. 地理科学, 2014, 34(8): 994-1001.
  [Xiao Ye, Shang Lina, Huang Zhigang, et al. Soil carbon, nitrogen and phosphorus contents and their ecological stoichiometry characteristics in mountainous marshes of eastern Jilin Province[J]. Scientia Geographica Sinica, 2014, 34(8): 994-1001.]
[31] 牟文博, 徐当会, 王谢军, 等. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431.
  [Mou Wenbo, Xu Danghui, Wang Xiejun, et al. Soil carbon, nitrogen, and phosphorus stoichiometry along an altitude gradient in shrublands in Pailugou watershed, China[J]. Chinese Journal of Plant Ecology, 2022, 46(11): 1422-1431.]
[32] 杨羽, 夏品华, 林陶, 等. 贵州草海湿地不同水位梯度土壤碳、氮、磷含量及其生态化学计量比分布特征[J]. 湖泊科学, 2020, 32(1): 164-172.
  [Yang Yu, Xia Pinhua, Lin Tao, et al. Soil C, N, P contents and their ecological stoichiometric ratios at different water level gradients in Caohai wetland, Guizhou Province[J]. Journal of Lake Sciences, 2020, 32(1): 164-172.]
[33] 刘永万, 白炜, 尹鹏松, 等. 外源氮素添加对长江源区高寒沼泽草甸土壤养分及植物群落生物量的影响[J]. 草地学报, 2020, 28(2): 483-491.
  [Liu Yongwan, Bai Wei, Yin Pengsong, et al. Effects of exogenous nitrogen addition on soil nutrients and plant community biomass of Alpine marsh meadow in the source region of the Yangtze River[J]. Acta Agrestia Sinica, 2020, 28(2): 483-491.]
[34] Paul Eldor A. Soil Microbiology, Ecology, and Biochemistry[M]. London: Academic Press, 2006: 189-203.
[35] 彭佩钦, 张文菊, 童成立, 等. 洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系[J]. 应用生态学报, 2005, 16(10): 1872-1878.
  [Peng Peiqin, Zhang Wenju, Tong Chengli, et al. Soil C, N and P contents and their relationships with soil physical properties in wet-lands of Dongting Lake flood plain[J]. Chinese Journal of Applied Ecology, 2005, 16(10): 1872-1878.]
[36] 刘颖, 宫渊波, 李瑶, 等. 川西高寒灌丛草地不同海拔梯度土壤化学计量特征[J]. 四川农业大学学报, 2018, 36(2): 167-174.
  [Liu Ying, Gong Yuanbo, Li Yao, et al. Soil stoichiometry characteristics of alpine shrub grassland at different elevation gradients in western Sichuan[J]. Journal of Sichuan Agricultural University, 2018, 36(2): 167-174.]
[37] Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C:N:P ratio in China’s soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(1-3): 139-151.
Outlines

/