Weather and Climate

Characteristics and pollutant concentrations of persistent cold air pools in Lanzhou from 2013 to 2023

  • KANG Guoqiang ,
  • MA Minjin ,
  • CAO Yidan ,
  • CHEN Ran
Expand
  • College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China

Received date: 2023-10-01

  Revised date: 2023-12-11

  Online published: 2024-04-01

Abstract

Persistent cold air pools (PCAPs) in valley cities lead to the prolonged accumulation of air pollutants, thereby affecting the lives and health of residents. In this study, sounding data and daily air quality data from January 2013 to November 2023 were used to calculate and statistically analyze the characteristics of PCAPs occurrences in the Lanzhou Valley. In addition, the impact of PCAPs intensity on changes in pollutant concentrations was explored, and variations in pollutant concentrations during PCAPs were analyzed and compared with concurrent dust aerosol pollution. Results indicate that from 2013 to 2023, 59 PCAPs occurred, lasting cumulative 197 days. During PCAPs, valley heat deficit and PM2.5 concentrations were 4.4 J·m-2 and 52.59 μg·m-3 higher, respectively, compared with non-PCAPs. The air quality index (AQI), SO2 concentration, NO2 concentration, CO concentration, and PM10 concentration increased by 70.37%, 144.3%, 84.3%, 156%, and 73.15%, respectively, whereas O3 concentration decreased by 60.89% during PCAPs. In PCAPs without dust aerosols, the average PM2.5:PM10 ratio was 0.58, whereas in PCAPs with dust aerosols, the average ratio was 0.31. During PCAPs with concurrent dust aerosols, PM2.5 concentration, PM10 concentration, AQI, and O3 concentration increased by 18.33%, 133.03%, 84.44%, and 8.5%, respectively. However, SO2 and CO concentrations decreased by 17.54% and 17.88%, respectively. These findings can serve as a reference for atmospheric pollution prevention and management strategies in the Lanzhou region.

Cite this article

KANG Guoqiang , MA Minjin , CAO Yidan , CHEN Ran . Characteristics and pollutant concentrations of persistent cold air pools in Lanzhou from 2013 to 2023[J]. Arid Zone Research, 2024 , 41(3) : 375 -386 . DOI: 10.13866/j.azr.2024.03.03

References

[1] 菅月诚, 赵铖博, 朱子博, 等. 聊城市PM2.5和O3污染特征及气象因素影响分析[J]. 环境科学学报, 2023, 43(9): 257-267.
  [Jian Yuecheng, Zhao Chengbo, Zhu Zibo, et al. Analysis of PM2.5 and O3 pollution characteristics and the influence of meteorological factors in Liaocheng City[J]. Acta Scientiae Circumstantiae, 2023, 43(9): 257-267.]
[2] 刘淼晗, 于宸涛, 房祥玉, 等. 2014—2020年河南省PM2.5-O3复合污染特征及气象成因分析[J]. 环境科学研究, 2023, 36(2): 285-293.
  [Liu Miaohan, Yu Chentao, Fang Xiangyu, et al. Analysis of PM2.5-O3 compound pollution characteristics and meteorological causes in Henan Province from 2014 to 2020[J]. Research of Environmental Sciences, 2023, 36(2): 285-293.]
[3] 樊文雁, 蔡子颖, 姚青, 等. 区域输送对天津臭氧污染的影响[J]. 中国环境科学, 2022, 42(11): 4991-4999.
  [Fan Wenyan, Cai Ziying, Yao Qing, et al. Effect of regional transport on ozone pollution in Tianjin[J]. China Environmental Science, 2022, 42(11): 4991-4999.]
[4] 贾册, 陈臻, 韩梅. 基于决策树模型的区域PM2.5污染管控时空识别—以关中地区为例[J]. 干旱区研究, 2022, 39(4): 1056-1065.
  [Jia Ce, Chen Zhen, Han Mei. Optimal time period for PM2.5 control based on decision tree model: A case study of Guanzhong, China[J]. Arid Zone Research, 2022, 39(4): 1056-1065.]
[5] 王安庭, 李煜斌, 赵纯, 等. 边界层方案对南京地区PM2.5浓度模拟的影响[J]. 中国环境科学, 2021, 41(7): 2977-2992.
  [Wang Anting, Li Yubin, Zhao Chun, et al. Influence of different boundary layer schemes on PM2.5 concentration simulation in Nanjing[J]. China Environmental Science, 2021, 41(7): 2977-2992.]
[6] Aron D J, Agustín R G, Ernesto C. Locally induced surface air confluence by complex terrain and its effects on air pollution in the valley of Mexico[J]. Atmospheric Environment, 2005, 39(30): 5481-5489.
[7] Holmes H, Jai K S, Eric R P, et al. Turbulent fluxes and pollutant mixing during wintertime air pollution episodes in complex terrain[J]. Environmental Science & Technology, 2015, 49(22): 13206-13214.
[8] Lu W, Zhong S. A numerical study of a persistent cold air pool episode in the Salt Lake Valley, Utah[J]. Journal of Geophysical Research-Atmospheres, 2014, 119(4): 1733-1752.
[9] Lareau N P, Horel J D. Dynamically induced displacements of a persistent cold-air pool[J]. Boundary-Layer Meteorology, 2015, 154(2): 291-316.
[10] Price J D, Vosper S, Brown A, et al. COLPEX field and numerical studies over a region of small hills[J]. Bulletin of the American Meteorological Society, 2011, 92(12): 1636-1650.
[11] Whiteman C D, Zhong S, Shaw W J, et al. Cold pools in the Columbia basin[J]. Weather and Forecasting, 2001, 16(4): 432-447.
[12] Lareau N P, Crosman E, Whiteman C D, et al. The persistent cold-air pool study[J]. Bulletin of the American Meteorological Society, 2013, 94(1): 51-63.
[13] Yao W, Zhong S. Nocturnal temperature inversions in a small, enclosed basin and their relationship to ambient atmospheric conditions[J]. Meteorology and Atmospheric Physics, 2009, 103(1): 195-210.
[14] Wolyn P G, Mckee T B. Deep stable layers in the intermountain western United States[J]. Monthly Weather Review, 1989, 117(3): 461-472.
[15] Reeves H D, Stensrud D J. Synoptic-scale flow and valley cold pool evolution in the western United States[J]. Weather and Forecasting, 2009, 24(6): 1625-1643.
[16] Umek L, Gohm A, Haid M, et al. Large-eddy simulation of foehn-cold pool interactions in the Inn Valley during PIANO IOP 2[J]. Quarterly Journal of the Royal Meteorological Society, 2021, 147(735): 944-982.
[17] Pastore M A, Classen A T, D'Amato A W, et al. Cold-air pools as microrefugia for ecosystem functions in the face of climate change[J]. Ecology, 2022, 103(8): e3717.
[18] Silcox G D, Kelly K E, Crosman E T, et al. Wintertime PM2.5 concentrations during persistent, multi-day cold-air pools in a mountain valley[J]. Atmospheric Environment, 2011, 46(18): 17-24.
[19] Ivey C E, Balachandran S, Colgan S, et al. Investigating fine particulate matter sources in Salt Lake City during persistent cold air pool events[J]. Atmospheric Environment, 2019, 213(26): 568-578.
[20] McCaffrey K, Wilczak J M, Bianco L, et al. Identification and characterization of persistent cold pool events from temperature and wind profilers in the Columbia River basin[J]. Journal of Applied Meteorology and Climatology, 2019, 58(12): 2533-2551.
[21] Sun X, Holmes H. Surface turbulent fluxes during persistent cold-air pool events in the Salt Lake Valley, Utah. Part I: Observations[J]. Journal of Applied Meteorology and Climatology, 2019, 58(12): 2553-2568.
[22] Neemann E M, Crosman E T, Horel J D, et al. Simulations of a cold-air pool associated with elevated wintertime ozone in the Uintah Basin, Utah[J]. Atmospheric Chemistry and Physics, 2015, 15(1): 135-151.
[23] Crosman E T, Horel J D. Large-eddy simulations of a Salt Lake Valley cold-air pool[J]. Atmospheric Research, 2017, 193(32): 10-25.
[24] Colgan S, Sun X, Holmes H A. A novel meteorological method to classify wintertime cold-air pool events[J]. Atmospheric Environment, 2021, 261(29): 118594.
[25] 杨燕萍, 王莉娜, 杨丽丽, 等. 兰州市沙尘天气污染特征及潜在源区[J]. 中国沙漠, 2020, 40(3): 60-66.
  [Yang Yanping, Wang Lina, Yang Lili, et al. Air pollution characteristics and potential sources in Lanzhou during dust weather[J]. Journal of Desert Research, 2020, 40(3): 60-66.]
[26] 赵侦竹, 马敏劲, 康国强, 等. 兰州市空气污染物变化及污染持续性特征分析[J]. 干旱区研究, 2023, 40(5): 715-725.
  [Zhao Zhenzhu, Ma Minjin, Kang Guoqiang, et al. Analysis on variation characteristics of continuous air pollution in Lanzhou[J]. Arid Zone Research, 2023, 40(5): 715-725.]
[27] 杨秀梅. 兰州持续性冷池空气污染特征及其生消过程的研究[D]. 兰州: 兰州大学, 2018.
  [Yang Xiumei. Air Pollution Characteristics of Persistent Cold Air Pool in Lanzhou and Its Formation and Dissipation Processes[D]. Lanzhou: Lanzhou University, 2018.]
[28] 狄慧, 车浩驰, 王彦锋. 2000—2019年兰州地区秋冬季大气环流下的污染特征分析[J]. 气象与环境科学, 2023, 46(1): 66-72.
  [Di Hui, Che Haochi, Wang Yanfeng. Pollution characteristics under atmospheric circulations in autumn and winter in Lanzhou from 2000 to 2019[J]. Meteorological and Environmental Sciences, 2023, 46(1): 66-72.]
[29] 王式功, 杨民, 祁斌, 等. 甘肃河西沙尘暴对兰州市空气污染的影响[J]. 中国沙漠, 1999, 19(4): 58-62.
  [Wang Shigong, Yang Min, Qi Bin, et al. Influence of sand-dust storms occurring over the Gansu Hexi district on the air pollution in Lanzhou City[J]. Journal of Desert Research, 1999, 19(4): 58-62.]
[30] 马敏劲, 谭子渊, 陈玥, 等. 近15 a兰州市空气质量变化特征及沙尘天气影响[J]. 兰州大学学报(自然科学版), 2019, 55(1): 33-41.
  [Ma Minjin, Tan Ziyuan, Chen Yue, et al. Characteristics of air quality and impact of sand and dust weather in the recent 15 years in Lanzhou City[J]. Journal of Lanzhou University (Natural Sciences), 2019, 55(1): 33-41.]
[31] Whiteman C D, Bian X D, Zhong S Y. Wintertime evolution of the temperature inversion in the Colorado Plateau Basin[J]. Journal of Applied Meteorology and Climatology, 1999, 38(8): 1103-1117.
[32] Cao X, Wang Z, Tian P, et al. Statistics of aerosol extinction coefficient profiles and optical depth using lidar measurement over Lanzhou, China since 2005-2008[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 122(53): 150-154.
[33] 李志强, 刘谦和, 宋宝健, 等. 兴隆山地貌特征及地貌类型划分[J]. 甘肃农业大学学报, 1990, 25(3): 303-312.
  [Li Zhiqiang, Liu Qianhe, Song Baojian, et al. Geomorphic features and types of Xinglong mountains[J]. Journal of Gansu Agricultural University, 1990, 25(3): 303-312.]
[34] 安永梅, 杜维波, 周晓雷, 等. 兴隆山自然保护区种子植物的垂直分布格局研究[J]. 西北植物学报, 2023, 43(6): 1017-1025.
  [An Yongmei, Du Weibo, Zhou Xiaolei, et al. Vertical distribution pattern of seed plantsin Xinglong mountain nature reserve[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(6): 1017-1025.]
[35] Yu X, Zhu B, Fan S, et al. Ground-based observation of aerosol optical properties in Lanzhou, China[J]. Journal of Environmental Sciences, 2009, 21(11): 1519-1524.
[36] Cai Q, Dai X R, Li J R, et al. The characteristics and mixing states of PM2.5 during a winter dust storm in Ningbo of the Yangtze River Delta, China[J]. The Science of the Total Environment, 2019, 709(48): 136-146.
[37] Whiteman C D, Hoch S W, Horel J D, et al. Relationship between particulate air pollution and meteorological variables in Utah’s Salt Lake Valley[J]. Atmospheric Environment, 2014, 94(21): 742-753.
[38] 靳烟雨. 新冠疫情期间各省份大气污染特征分析[D]. 开封: 河南大学, 2023.
  [Jin Yanyu. Analysis of Air Pollution Characteristics in Different Provinces During COVID-19[D]. Kaifeng: Henan University, 2023.]
[39] 单玉龙, 彭悦, 楚碧武, 等. 我国重点行业氮氧化物管控现状及减排策略[J]. 环境科学研究, 2023, 36(3): 431-438.
  [Shan Yulong, Peng Yue, Chu Biwu, et al. Control status and emission reduction strategies of nitrogen oxides in key industries in China[J]. Research of Environmental Sciences, 2023, 36(3): 431-438.]
[40] 刘楚薇, 连鑫博, 黄建平. 我国臭氧污染时空分布及其成因研究进展[J]. 干旱气象, 2020, 38(3): 355-361.
  [Liu Chuwei, Lian Xinbo, Huang Jianping. Research review on the spatio-temporal distribution of ozone pollution and its causes in China[J]. Journal of Arid Meteorology, 2020, 38(3): 355-361.]
[41] 赵留元, 李子璇, 吕沛诚, 等. 基于SPAMS的兰州市2018年冬季沙尘天气过程细颗粒物污染特征及来源研究[J]. 环境科学学报, 2020, 40(2): 388-400.
  [Zhao Liuyuan, Li Zixuan, Lü Peicheng, et al. Pollution characteristics and sources of atmospheric fine particulates during the period of 2018, winter dust weather in Lanzhou City based on SPAMS technology[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 388-400.]
[42] 王蕾, 杨震, 刘笑, 等. 关中地区沙尘输送路径及潜在源区分析[J]. 干旱区资源与环境, 2023, 37(10): 109-117.
  [Wang Lei, Yang Zhen, Liu Xiao, et al. Transport pathways and potential source regions of dust in Guanzhong region[J]. Journal of Arid Land Resources and Environment, 2023, 37(10): 109-117.]
[43] 郭文凯, 刘镇, 刘文博, 等. 兰州生物质燃烧VOCs排放特征及其大气环境影响[J]. 中国环境科学, 2019, 39(1): 40-49.
  [Guo Wenkai, Liu Zhen, Liu Wenbo, et al. The characteristics of VOCs emission from biomass burning and its influence on atmospheric environment in Lanzhou City[J]. China Environmental Science, 2019, 39(1): 40-49.]
[44] Sun K, Chen X. Spatio-temporal distribution of localized aerosol loading in China: A satellite view[J]. Atmospheric Environment, 2017, 163(24): 35-43.
Outlines

/