Vertical characteristics of raindrop size distribution in a precipitation process in a Three-River Source Region
Received date: 2023-07-03
Revised date: 2023-12-15
Online published: 2024-04-01
Based on data obtained from the Micro Rain Radar (MRR), OTT-PARSIVEL laser raindrop spectrometer, and Rain Gauge (RG) at Zeku Station, the applicability of the MRR in the plateau region was compared and examined for a precipitation weather process on September 17, 2021. The vertical variation characteristics of the MRR observation parameters and raindrop spectrum were investigated at different rain rates. Results show that the observed cumulative rainfall results of the MRR were consistent with those of the raindrop spectrometer and RG, and the MRR 200 m rain rate was highly associated with the raindrop spectrometer inversion value. At various levels of rainfall intensity, differences were found in the vertical distribution of precipitation parameters. Reflectivity, rain rate and liquid water content were affected by evaporation, and they fluctuated from high to low levels in the I stage of rain. The evaporation effect was weakened, and the peak height of each microphysical quantity was lower in the II stage of rain. The increase in particle diameter was due to the intensification of collision and coalescence, and the microphysical quantities increased with the decrease in height in the III stage of rain. Precipitation was dominated by small particles, and the raindrop number concentration contribution of small particles at each height layer was the largest. The contribution rate of 1000-4000 m small particles to the rain rate exceeded 90%, and the contribution rate of medium particles below 1000 m to the rain rate increased with the decrease of height. The contribution rate of large particles to the rain rate in the upper layer was greater than that in the lower layer.
GUO Shiyu , ZHANG Yuxin , HAN Huibang , ZHOU Wanfu , KANG Xiaoyan , ZHANG Liyan . Vertical characteristics of raindrop size distribution in a precipitation process in a Three-River Source Region[J]. Arid Zone Research, 2024 , 41(3) : 353 -362 . DOI: 10.13866/j.azr.2024.03.01
[1] | Marshall J S, Palmer W M. The distribution of raindrops with size[J]. Journal of Meteorology, 1948, 5(4): 165-166. |
[2] | 朱珍华. 我国云雾降水微物理特征的研究[M]. 北京: 科学出版社, 1965: 30-40. |
[Zhu Zhenhua. Study of Cloud Precipitation Microphysical Characteristics in China[M]. Beijing: Science Press, 1965: 30-40.] | |
[3] | 李欣, 张璐. 北上台风强降水形成机制及微物理特征[J]. 应用气象学报, 2022, 33(1): 29-42. |
[Li Xin, Zhang Lu. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons[J]. Journal of Applied Meteorological Science, 2022, 33(1): 29-42.] | |
[4] | 吴亚昊, 刘黎平, 周筠珺, 等. 雨滴谱的变化对降水估测的影响研究[J]. 高原气象, 2016, 35(1): 220-230. |
[Wu Yahao, Liu Liping, Zhou Yunjun, et al. Study of raindrop influence of spectrum change on precipitation estimation[J]. Plateau Meteorology, 2016, 35(1): 220-230.] | |
[5] | 王建恒, 陈瑞敏, 王国宁. 一次中小尺度强降水火箭增雨作业效果评估[J]. 气象科技, 2005, 33(增刊1): 82-86. |
[Wang Jianheng, Chen Ruimin, Wang Guoning. Effectiveness evaluation of a rocket precipitation enhancement operation during a severe small scale rainstorm[J]. Meteorological Science and Technology, 2005, 33(Suppl.): 82-86.] | |
[6] | 梅海霞, 郭文刚, 周林义, 等. 雨滴谱谱形参数对梅雨降水模拟能力的影响[J]. 气象, 2017, 43(1): 34-45. |
[Mei Haixia, Guo Wengang, Zhou Linyi, et al. Effect of shape parameter of raindrop spectrum on the simulation of Meiyu rainfall[J]. Meteorological Monthly, 2017, 43(1): 34-45.] | |
[7] | Smith J A, Hui E, Steiner M, et al. Variability of rainfall rate and raindrop size distributions in heavy rain[J]. Water Resources Research, 2009, 45(4): 408-419. |
[8] | Maki M, Keenan T D, Sasaki Y, et al. Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia[J]. American Meteorological Society, 2001, 40(8): 1393-1412. |
[9] | 赵城城, 张乐坚, 梁海河, 等. 北京山区和平原地区夏季雨滴谱特征分析[J]. 气象, 2021, 47(7): 830-842. |
[Zhao Chengcheng, Zhang Lejian, Liang Haihe, et al. Microphypical characteristics of the raindrop size distribution between mountain and plain areas over Beijing in summer[J]. Meteorological Monthly, 2021, 47(7): 830-842.] | |
[10] | 柳臣中, 周筠珺, 谷娟, 等. 成都地区雨滴谱特征[J]. 应用气象学报, 2015, 26(1): 112-121. |
[Liu Chenzhong, Zhou Yunjun, Gu Juan, et al. Characteristics of raindrop size distribution in Chengdu[J]. Journal of Applied Meteorological Science, 2015, 26(1): 112-121.] | |
[11] | 李山山, 王晓芳, 万蓉, 等. 青藏高原东坡不同海拔区域的雨滴谱特征[J]. 高原气象, 2020, 39(5): 899-911. |
[Li Shanshan, Wang Xiaofang, Wan Rong, et al. The characteristics of raindrop spectrum in different altitude region on the eastern slope of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2020, 39(5): 899-911.] | |
[12] | 于建宇, 李茂善, 阴蜀城, 等. 青藏高原那曲地区云降水微观特征雨滴谱分析[J]. 成都信息工程大学学报, 2020, 35(2): 188-194. |
[Yu Jianyu, Li Maoshan, Yin Shucheng, et al. Analysis of cloud precipitation microscopic characteristic raindrop spectrum in Nagqu area of Qinghai-Tibet Plateau[J]. Journal of Chengdu University of Information Technology, 2020, 35(2): 188-194.] | |
[13] | 张玉欣, 韩辉邦, 郭世钰, 等. 祁连山南麓夏季不同降水云系雨滴谱特征及其Z-R关系[J]. 干旱区研究, 2021, 38(4): 1048-1057. |
[Zhang Yuxin, Han Huibang, Guo Shiyu, et al. Statistical characteristics of raindrop size distribution and its Z-R relationship for different precipitation clouds in summer in the Qilian Mountains[J]. Arid Zone Research, 2021, 38(4): 1048-1057.] | |
[14] | Chen B J, Yang J, Gao R Q, et al. Vertical variability of the raindrop size distribution in typhoons observed at the Shenzhen 356-m meteorological tower[J]. Journal of the Atmospheric Sciences, 2020, 77(12): 1-59. |
[15] | 陈聪, 银燕, 陈宝君. 黄山不同高度雨滴谱的演变特征[J]. 大气科学学报, 2015, 38(3): 388-395. |
[Chen Cong, Yin Yan, Chen Baojun. Raindrop size distribution at different altitudes in Mt. Huang[J]. Transactions of Atmospheric Sciences, 2015, 38(3): 388-395.] | |
[16] | 王洪, 雷恒池, 杨洁帆. 微降水雷达测量精度分析[J]. 气候与环境研究, 2017, 22(04): 392-404. |
[Wang Hong, Lei Hengchi, Yang Jiefan. Analysis of measurement accuracy of micro rain radar[J]. Climatic and Environmental Research, 2017, 22(4): 392-404.] | |
[17] | Rogers R R. An Extension of the Z-R Relation for Doppler Radar[C]// The 11th Weather Radar Confernce, 1964: 14-18. |
[18] | Hauser D, Amayenc P. A New method for deducing Hydrometeor-Size distributions and vertical air motions from doppler radar measurements at vertical incidence[J]. Journal of Applied Meterology, 1981, 20(5): 547-555. |
[19] | 汤达章, Richard E P. 垂直指向多卜勒雷达测量大气垂直运动和雨滴谱等物理量的方法[J]. 大气科学学报, 1985, 8(1): 36-46. |
[Tang Dazhang, Richard E P. A new method for inferring raindrop size distribution and vertical air motions from vertical incidence doppler measurements[J]. Transactions of Atmospheric Sciences, 1985, 8(1): 36-46.] | |
[20] | 郑娇恒, 陈宝君. 雨滴谱分布函数的选择: M-P和Gamma分布的对比研究[J]. 气象科学, 2007, 27(1): 17-25. |
[Zheng Jiaoheng, Chen Baojun. Comparative study of exponential and gamma functional fits to observed raindrop size distribution[J]. Journal of the Meteorological Sciences, 2007, 27(1): 17-25.] | |
[21] | 崔云扬, 周毓荃, 蔡淼. 利用微雨雷达研究一次冷锋云系降水的垂直结构分布及演变特征[J]. 大气科学, 2019, 43(3): 618-633. |
[Cui Yunyang, Zhou Yuquan, Cai Miao. Vertical structure and evolution of precipitation associated with clouds along a cold front based on micro rain radar observations[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(3): 618-633.] | |
[22] | 郭欣, 郭学良, 付丹红. 云凝结核浓度对不同弗罗德数下形成的地形云和降水的影响[J]. 气象学报, 2017, 75(2): 314-327. |
[Guo Xin, Guo Xueliang, Fu Danhong. Effects of CCN concentration on orographic clouds and precipitation formed with different Froude numbers[J]. Acta Meteorologica Sinica, 2017, 75(2): 314-327.] | |
[23] | Peters G, Fischer B, Münster H, et al. Profiles of raindrop size distributions as retrieved by microrain radars[J]. Journal of Applied Meteorology, 2005, 44(12): 1930-1949. |
[24] | 张玉欣, 韩辉邦, 康晓燕, 等. 三江源隆宝高寒湿地不同云系降水雨滴谱特征[J]. 高原山地气象研究, 2022, 42(1): 24-29. |
[Zhang Yuxin, Han Huibang, Kang Xiaoyan, et al. Characteristics of raindrop size distribution for different precipitation clouds in Longbao area of the Three-River source region[J]. Plateau and Mountain Meteorology Research, 2022, 42(1): 24-29.] | |
[25] | 宋灿, 周毓荃, 吴志会. 雨滴谱垂直演变特征的微雨雷达观测研究[J]. 应用气象学报, 2019, 30(4): 479-490. |
[Song Can, Zhou Yuquan, Wu Zhihui. Vertical profiles of raindrop size distribution observed by micro rain radar[J]. Journal of Applied Meteorological Science, 2019, 30(4): 479-490.] | |
[26] | 仝泽鹏, 杨莲梅, 曾勇, 等. 利用微雨雷达研究伊宁地区一次大雨过程的雨滴谱垂直演变特征[J]. 干旱气象, 2021, 39(2): 279-287. |
[Tong Zepeng, Yang Lianmei, Zeng Yong, et al. Vertical characteristics of raindrop size distribution during a heavy rain in Yining of Xinjiang based on micro-rain radar data[J]. Journal of Arid Meteorology, 2021, 39(2): 279-287.] | |
[27] | 马思敏, 舒志亮, 常倬林, 等. 宁夏六盘山区地面雨滴谱特征统计分析[J]. 干旱区研究, 2023, 40(8): 1203-1214. |
[Ma Simin, Shu Zhiliang, Chang Zhuolin, et al. Statistics and analysis of surface raindrop spectrum characteristics in Liupan Mountain area of Ningxia[J]. Arid Zone Research, 2023, 40(8): 1203-1214.] |
/
〈 |
|
〉 |