Spatialtemporal variation characteristics of drought in the Fenhe River Basin based on CWSI
Received date: 2023-04-07
Revised date: 2023-10-25
Online published: 2024-03-11
Based on MOD16 global evapotranspiration data, the Crop Water Stress Index (CWSI) was computed. This was combined with the meteorological station precipitation, temperature, and vegetation index data in the Fenhe River Basin, along with land use data. Employing the difference method, linear trend method, and correlation analysis, the temporal and spatial characteristics of drought in the Fenhe River Basin from 2000 to 2021 were analyzed. The results showed that: (1) CWSI effectively monitored drought in the Fenhe River Basin, displaying a notably negative correlation between CWSI and 10 cm soil relative moisture. (2) The spatial distribution of CWSI in the Fenhe River Basin exhibited significant disparities, illustrating wet conditions in the south and dry conditions in the north. (3) While interannual CWSI variations in the Fenhe River Basin remained relatively stable, monthly fluctuations were substantial, peaking in May annually. (4) Drought conditions varied distinctly during different growing periods in the Fenhe River Basin: significant drought occurred in the early growing season (April to May), encompassing 48.55% of the Fenhe River Basin area. No drought occurred in the mid-growing season (June to August). By the end of the growing season (September to October), only 11.17% of the area experienced drought. (5) Drought occurrences differed among various land use types, ranked by CWSI from smallest to largest: forest land (0.686) < grassland (0.749) < cultivated land (0.751) < unused land (0.758) < urban land (0.765). These study outcomes offer critical scientific data support for drought monitoring and decision-making regarding drought resistance in the Fenhe River Basin.
ZHOU Yi , SUO Wenjiao . Spatialtemporal variation characteristics of drought in the Fenhe River Basin based on CWSI[J]. Arid Zone Research, 2024 , 41(2) : 191 -199 . DOI: 10.13866/j.azr.2024.02.02
[1] | 张强, 韩兰英, 张立阳, 等. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 2014, 29(1): 80-91. |
[Zhang Qiang, Han Lanying, Zhang Liyang, et al. Analysis on the character and management strategy of drought disaster and risk under the climatic warming[J]. Advances in Earth Science, 2014, 29(1): 80-91.] | |
[2] | 吴孟泉, 崔伟宏, 李景刚. 温度植被干旱指数(TVDI)在复杂山区干旱监测的应用研究[J]. 干旱区地理, 2007, 30(1): 30-35. |
[Wu Mengquan, Cui Weihong, Li Jinggang. Monitoring drought in mountainous area based on temperature/vegetation dryness index (TVDI)[J]. Arid Land Geography, 2007, 30(1): 30-35.] | |
[3] | 汪左, 王芳, 张运. 基于CWSI的安徽省干旱时空特征及影响因素分析[J]. 自然资源学报, 2018, 33(5): 853-866. |
[Wang Zuo, Wang Fang, Zhang Yun. Spatio-temporal distribution characteristics and influencing factors of drought in Anhui Province based on CWSI[J]. Journal of Natural Resources, 2018, 33(5): 853-866.] | |
[4] | 张强, 鞠笑生, 李淑华. 三种干旱指标的比较和新指标的确定[J]. 气象科技, 1998(2): 49-53. |
[Zhang Qiang, Ju Xiaosheng, Li Shuhua. Comparison of three drought indicators and identification of new indicators[J]. Meteorological Science and Technology, 1998(2): 49-53.] | |
[5] | 王劲松, 郭江勇, 倾继祖. 一种K干旱指数在西北地区春旱分析中的应用[J]. 自然资源学报, 2007, 22(5): 709-717. |
[Wang Jinsong, Guo Jiangyong, Qing Jizu. Application of a kind of K drought index in the spring drought analysis in Northwest China[J]. Journal of Natural Resources, 2007, 22(5): 709-717.] | |
[6] | 邹旭恺, 任国玉, 张强. 基于综合气象干旱指数的中国干旱变化趋势研究[J]. 气候与环境研究, 2010, 15(4): 371-378. |
[Zou Xukai, Ren Guoyu, Zhang Qiang. Droughts variations in China based on a compound index of meteorological drought[J]. Climatic and Environmental Research, 2010, 15(4): 371-378.] | |
[7] | 陈家宁, 孙怀卫, 王建鹏, 等. 综合气象干旱指数改进及其适用性分析[J]. 农业工程学报, 2020, 36(16): 71-77. |
[Chen Jianing, Sun Huaiwei, Wang Jianpeng, et al. Improvement of comprehensive meteorological drought index and its applicability analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 71-77.] | |
[8] | 王晓燕, 李净, 邢立亭. 基于3种机器学习方法的农业干旱监测比较[J]. 干旱区研究, 2022, 39(1): 322-332. |
[Wanng Xiaoyan, Li Jing, Xing Liting. Comparative agricultural drought monitoring based on three machine learning methods[J]. Arid Zone Research, 2022, 39(1): 322-332.] | |
[9] | 刘安麟, 李星敏, 何延波, 等. 作物缺水指数法的简化及在干旱遥感监测中的应用[J]. 应用生态学报, 2004, 15(2): 210-214. |
[Liu Anlin, Li Xingmin, He Yanbo, et al. Simplification of crop shortage water index and its application in drought remote sensing monitoring[J]. Chinese Journal of Applied Ecology, 2004, 15(2): 210-214.] | |
[10] | 王玲玲, 张友静, 佘远见, 等. 遥感旱情监测方法的比较与分析[J]. 遥感信息, 2010, 25(5): 49-53. |
[Wang Lingling, Zhang Youjing, She Yuanjian, et al. Analysis and comparison of drought monitoring methods by remote sensing[J]. Remote Sensing of Information, 2010, 25(5): 49-53.] | |
[11] | 田国珍, 武永利, 梁亚春, 等. 基于蒸散发的干旱监测及时效性分析[J]. 干旱区地理, 2016, 39(4): 721-729. |
[Tian Guozhen, Wu Yongli, Liang Yachun, et al. Drought monitoring and timeliness based on evapotranspiration model[J]. Arid Land Geography, 2016, 39(4): 721-729.] | |
[12] | Mu Q Z, Heinsch F A, Zhao M S, et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2007, 111(4): 519-536. |
[13] | Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800. |
[14] | 张静, 任志远. 基于MOD16的汉江流域地表蒸散发时空特征[J]. 地理科学, 2017, 37(2): 274-282. |
[Zhang Jing, Ren Zhiyuan. Spatiotemporal characteristics of evapotranspiration based on MOD16 in the Hanjiang River Basin[J]. Scientia Geographica Sinica, 2017, 37(2): 274-282.] | |
[15] | 吴桂平, 刘元波, 赵晓松, 等. 基于MOD16产品的鄱阳湖流域地表蒸散量时空分布特征[J]. 地理研究, 2013, 32(4): 617-627. |
[Wu Guiping, Liu Yuanbo, Zhao Xiaosong, et al. Spatio-temporal variations of evapotranspiration in Poyang Lake Basin using MOD16 products[J]. Geographical Research, 2013, 32(4): 617-627.] | |
[16] | 温媛媛, 赵军, 王炎强, 等. 基于MOD16的山西省地表蒸散发时空变化特征分析[J]. 地理科学进展, 2020, 39(2): 255-264. |
[Wen Yuanyuan, Zhao Jun, Wang Yanqiang, et al. Spatiotemporal variation characteristics of surface evapotranspiration in Shanxi Province based on MOD16[J]. Progress in Geography, 2020, 39(2): 255-264.] | |
[17] | 李晴, 杨鹏年, 彭亮, 等. 基于MOD16数据的焉耆盆地蒸散量变化研究[J]. 干旱区研究, 2021, 38(2): 351-358. |
[Li Qing, Yang Pengnian, Peng Liang, et al. Study of the variation trend of evapotranspiration in the Yanqi Basin based on MOD16 data[J]. Arid Zone Research, 2021, 38(2): 351-358.] | |
[18] | 康利刚, 曹生奎, 曹广超, 等. 青海湖沙柳河流域蒸散发时空变化特征[J]. 干旱区研究, 2023, 40(3): 358-372. |
[Kang Ligang, Cao Shengkui, Cao Guangchao, et al. Temporal and spatial changes of evapotranspiration in the Shaliu River Basin of Qinghai Lake[J]. Arid Zone Research, 2023, 40(3): 358-372.] | |
[19] | 何慧娟, 卓静, 李红梅, 等. 基于MOD16产品的陕西关中地区干旱时空分布特征[J]. 干旱地区农业研究, 2016, 34(1): 236-241. |
[He Huijuan, Zhuo Jing, Li Hongmei, et al. Spatial-temporal distribution characteristics of drought in Guanzhong region of Shaanxi Province based on MOD16 products[J]. Agricultural Research in the Arid Areas, 2016, 34(1): 236-241.] | |
[20] | 刘秀红, 李智才, 刘秀春, 等. 山西春季干旱的特征及成因分析[J]. 干旱区资源与环境, 2011, 25(9): 156-160. |
[Liu Xiuhong, Li Zhicai, Liu Xiuchun, et al. Features and causes of spring drought in Shanxi[J]. Journal of Arid Land Resources and Environment, 2011, 25(9): 156-160.] | |
[21] | 李京京, 吕哲敏, 石小平, 等. 基于地形梯度的汾河流域土地利用时空变化分析[J]. 农业工程学报, 2016, 32(7): 230-236. |
[Li Jingjing, Lv Zhemin, Shi Xiaoping, et al. Spatiotemporal variations analysis for land use in Fen River Basin based on terrain gradient[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(7): 230-236.] | |
[22] | 张亚琳, 赵海燕, 王春玲, 等. 1979—2014年汾河流域干旱时空特征[J]. 中国农学通报, 2018, 34(3): 145-151. |
[Zhang Yalin, Zhao Haiyan, Wang Chunling, et al. Temporal and spatial characteristics of drought from 1979 to 2014 in Fen River Basin[J]. Chinese Agricultural Science Bulletin, 2018, 34(3): 145-151.] | |
[23] | 苏迎庆, 张恩月, 刘源, 等. 汾河流域土地利用变化及生态环境效应[J]. 干旱区研究, 2022, 39(3): 968-977. |
[Su Yingqing, Zhang Enyue, Liu Yuan, et al. Land-use changes and ecological environment effects on Fen River Basin[J]. Arid Zone Research, 2022, 39(3): 968-977.] | |
[24] | 史利江, 刘敏, 李艳萍, 等. 汾河流域县域经济差异的时空格局演变及驱动因素[J]. 地理研究, 2020, 39(10): 2361-2378. |
[Shi Lijiang, Liu Min, Li Yanping, et al. The spatio-temporal evolution and influencing factors of economic difference at county level in Fenhe River Basin[J]. Geographical Research, 2020, 39(10): 2361-2378.] | |
[25] | 伍博炜, 杨胜天, 邵南方, 等. 黄土高原生态脆弱区土地利用变化对生态系统服务价值的影响——以汾河流域为例[J]. 水土保持研究, 2019, 26(5): 340-345. |
[Wu Bowei, Yang Shengtian, Shao Nanfang, et al. Effects of land use change on ecosystem service value in fragile ecological area of the Loess Plateau: A case study of Fenhe River Basin[J]. Research of Soil and Water Conservation, 2019, 26(5): 340-345.] | |
[26] | Jackson R D, Idso S B, Reginato R J, et al. Canopy temperature as a crop water stress indicator[J]. Water Resources Research, 1981, 17(4): 1133-1138. |
[27] | Jackson R D, Kustas W P, Choudhury B J. A reexamination of the crop water stress index[J]. Irrigation Science, 1988, 9(4): 309-317. |
[28] | Tong S, Zhang J, Bao Y. Interdecadal spatiotemporal variations of aridity based on temperature and precipitation in Inner Mongolia, China[J]. Polish Journal of Environmental Studies, 2017, 26(2): 819-826. |
[29] | Pearson K. Note on regression and inheritance in the case of two parents[J]. Proceedings of the Royal Society of London, 1895, 58: 240-242. |
[30] | 张洁, 武建军, 周磊, 等. 基于MODIS数据的农业干旱监测方法对比分析[J]. 遥感信息, 2012, 27(5): 48-54. |
[Zhang Jie, Wu Jianjun, Zhou Lei, et al. Comparative study on remotely sensed methods of monitoring agricultural drought based on MODIS data[J]. Remote Sensing Information, 2012, 27(5): 48-54.] | |
[31] | 张强, 邹旭凯, 肖风劲, 等. GB/T 20481-2006. 气象干旱等级[S]. 北京: 中国标准出版社, 2006. |
[Zhang Qiang, Zou Xukai, Xiao Fengjin, et al. GB/T 20481-2006. The Grade of Meteorological Drought[S]. Beijing: China Standard Press, 2006.] | |
[32] | 马梓策. 华北地区干旱时空变化特征及其影响因素分析[D]. 呼和浩特: 内蒙古师范大学, 2020. |
[Ma Zice. Spatial and Temporal Characteristics of Drought and Its Influencing Factors in North China[D]. Hohhot: Inner Mongol Normal University, 2020.] |
/
〈 | 〉 |