Land and Water Resources

Spatiotemporal characteristics of sierozem and aeolian soil moisture levels in a desert steppe

  • Shuangqi YANG ,
  • Naiping SONG ,
  • Xing WANG ,
  • Xiaoying CHEN ,
  • Daoqin CHANG
Expand
  • 1. College of Ecological Environment, Ningxia University, Yinchuan 750021, Ningxia, China
    2. Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Ningxia University, Yinchuan 750021, Ningxia, China
    3. Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, Ningxia, China
    4. School of Agricultural, Ningxia University, Yinchuan 750021, Ningxia, China

Received date: 2023-02-13

  Revised date: 2023-04-22

  Online published: 2023-11-01

Abstract

Due to the interference from human activities and natural factors, the primary sierozem area in the Ningxia desert steppe has gradually shrunk due to long-term desertification and formed island patches within the surrounding aeolian soil. To reveal the spatiotemporal characteristics of soil moisture after sierozem desertification, a comparative study was carried out between the large (200-300 m2), medium (approximately 100 m2), and small (approximately 50 m2) sierozem patches and the surrounding aeolian soil in Wanjigou Village, Yanchi County, Ningxia, during the growing season (May to October from 2017 to 2019). The uniform rainfall pattern in 2017 led to the highest annual average soil moisture content. While the annual rainfall in 2018 was slightly higher than that in 2017, it was concentrated in the spring, and there were almost no rainfall events in the summer and autumn, resulting in a low soil moisture content throughout the year. The summer rainfall pattern in 2019 resulted in the highest average soil moisture content during the summer period. The soil moisture content of sierozem in the 0-100 cm soil layer first showed an increase and then a decrease with increases in soil depth and was greatest in the 10-40 cm soil layer. The soil moisture content of the aeolian soil increased with soil depth, and the soil moisture content of the 0-20 cm soil layer was much lower than that of the 20-100 cm layer. The moisture content of sierozem in the 0-20 cm soil layer was greater than that of the aeolian soil, while the moisture content of the sierozem in the 20-100 cm soil layer was significantly lower than that of the aeolian soil (except for small and medium-sized patches in 2018). There was no significant difference (P > 0.05) in the soil moisture content of the sierozem between the different patch sizes, except that the soil moisture content of the aeolian soil surrounding the large-sized patches was significantly greater than that of the small and medium-sized patches (P < 0.05). The water storage of sierozem in the 0-100 cm soil layer was generally lower than that of the aeolian soil, and the variation range was smaller than that of the aeolian soil during the same period. When the rainfall was <16 mm, the water in both soil types was in a consumption state. When the rainfall ranged from 16 to 25 mm, the water storage capacity of the sierozem was greater than that of the aeolian soil, but when the rainfall was >25 mm, the water storage capacity of the aeolian soil was greater than that of the sierozem. The soil moisture content in the desert steppe was dominated by the rainfall, its distribution pattern, and soil type. The moisture contents of the sierozem and aeolian soils differ in their profiles, as well as in response to rainfall.

Cite this article

Shuangqi YANG , Naiping SONG , Xing WANG , Xiaoying CHEN , Daoqin CHANG . Spatiotemporal characteristics of sierozem and aeolian soil moisture levels in a desert steppe[J]. Arid Zone Research, 2023 , 40(10) : 1625 -1636 . DOI: 10.13866/j.azr.2023.10.09

References

[1] 冯伟, 李卫, 杨文斌, 等. 毛乌素沙地樟子松固沙林土壤水分对降雨的动态响应[J]. 水土保持研究, 2019, 26(3): 101-107.
[1] [Feng Wei, Li Wei, Yang Wenbin, et al. Dynamic response of soil moisture to rainfall in the Pinus sylvestris var. mongolica sand fixation forest of Mu Us Sandy Land[J]. Research of Soil and Water Conservation, 2019, 26(3): 101-107.]
[2] 聂明鹤, 沈艳, 陆颖, 等. 宁夏盐池县荒漠草原区不同群落优势植物叶片-土壤生态化学计量特征[J]. 草地学报, 2021, 29(1): 131-140.
[2] [Nie Minghe, Shen Yan, Lu Ying, et al. Ecostoichiometric characteristics of dominant plant leaves-soil ecology in different communities of desert steppe in Yanchi County, Ningxia[J]. Acta Agrestia Sinica, 2021, 29(1): 131-140.]
[3] 吴婷, 宋乃平, 陈晓莹, 等. 围栏封育和放牧对盐池荒漠草原植物群落特征的影响[J]. 草地学报, 2019, 27(3): 651-660.
[3] [Wu Ting, Song Naiping, Chen Xiaoying, et al. Effects of enclosure and grazing on the characteristics of plant communities in desert steppe of Yanchi[J]. Acta Agrestia Sinica, 2019, 27(3): 651-660.]
[4] 秦洁, 司建华, 贾冰, 等. 巴丹吉林沙漠植被群落特征与土壤水分关系研究[J]. 干旱区研究, 2021, 38(1): 207-222.
[4] [Qin Jie, Si Jianhua, Jia Bing, et al. Study on the relationship between vegetation community characteristics and soil moisture in Badain Jaran Desert[J]. Arid Zone Research, 2021, 38(1): 207-222.]
[5] 陈娟, 宋乃平, 陈林, 等. 荒漠草原不同覆被类型土壤水分动态及其对降水的响应[J]. 水土保持学报, 2021, 35(6): 198-206.
[5] [Chen Juan, Song Naiping, Chen Lin, et al. Soil moisture dynamics and its response to precipitation in different cover types of desert steppe[J]. Journal of Soil and Water Conservation, 2021, 35(6): 198-206.]
[6] 罗叙, 李建平, 张翼, 等. 荒漠草原土壤水分时空变化对降水变化的响应[J]. 水土保持研究, 2021, 28(4): 142-150, 158.
[6] [Luo Xu, Li Jianping, Zhang Yi, et al. Response of spatial and temporal variation of soil moisture to precipitation change in desert steppe[J]. Research of Soil and Water Conservation, 2021, 28(4): 142-150, 158.]
[7] Du Lingtong, Zeng Yijian, Ma Longlong, et al. Effects of anthropogenic revegetation on the water and carbon cycles of a desert steppe ecosystem[J]. Agricultural and Forest Meteorology, 2021, 300: 108339.
[8] 刘佳欣, 刘嘉丽, 王妮, 等. 盐池荒漠草原人工种植四种灌木的适应性分析[J]. 农业科学研究, 2022, 43(3): 1-5.
[8] [Liu Jiaxin, Liu Jiali, Wang Ni, et al. Adaptability analysis of four artificial planting shrubs in Yanchi desert steppe[J]. Journal of Agricultural Sciences, 2022, 43(3): 1-5.]
[9] 王乐, 杜灵通, 马龙龙, 等. 人工灌丛化对荒漠草原生态系统碳储量的影响[J]. 生态学报, 2022, 42(1): 246-254.
[9] [Wang Le, Du Lingtong, Ma Longlong, et al. Effects of planted shrub encroachment on carbon storage of desert steppe ecosystem[J]. Acta Ecologica Sinica, 2022, 42(1): 246-254.]
[10] Yang J, Chen H, Nie Y, et al. Dynamic variations in profile soil water on karst hillslopes in Southwest China[J]. Catena, 2019, 172: 655-663.
[11] Rotzer K, Montzka C, Bogena H, et al. Catchment scale validation of SMOS and ASCAT soil moisture products using hydrological modeling and temporal stability analysis[J]. Journal of Hydrology, 2014, 519: 934-946.
[12] 汪海娇, 田丽慧, 张登山, 等. 青海湖东沙地不同植被恢复措施下土壤水分变化特征[J]. 干旱区研究, 2021, 38(2): 76-86.
[12] [Wang Haijiao, Tian Lihui, Zhang Dengshan, et al. Variation of soil moisture content in vegetation restoration area of sandy land at east shore of Qinghai Lake[J]. Arid Zone Research, 2021, 38(2): 76-86.]
[13] Wang X B, Zhou B Y, Sun X F, et al. Soil tillage management affects maize grain yield by regulating spatial distribution coordination of roots, soil moisture and nitrogen status[J]. Plos One, 2015, 10(6): e0129231.
[14] 李亚新, 陈伟, 孙从建, 等. 黄土丘陵区农耕地与撂荒地土壤水分特征及对降雨的响应分析[J]. 干旱区资源与环境, 2021, 35(12): 114-120.
[14] [Li Yaxin, Chen Wei, Sun Congjian, et al. Soil moisture characteristics and their response to rainfall in cultivated land and abandoned land in loess hilly region[J]. Journal of Arid Land Resources and Environment, 2021, 35(12): 114-120.]
[15] 邱扬, 傅伯杰, 王军, 等. 黄土丘陵小流域土壤水分的空间异质性及其影响因子[J]. 应用生态学报, 2001, 12(5): 715-720.
[15] [Qiu Yang, Fu Bojie, Wang Jun, et al. Spatial heterogeneity of soil moisture content on the Loess Plateau, China and its relation to influencing factors[J]. Chinese Journal of Applied Ecology, 2001, 12(5): 715-720.]
[16] 袁立敏, 杨制国, 薛博, 等. 呼伦贝尔草原风蚀坑土壤水分异质效应研究[J]. 干旱区研究, 2022, 39(5): 1598-1606.
[16] [Yuan Limin, Yang Zhiguo, Xue Bo, et al. Heterogeneity of soil moisture of blowouts in HulunBuir grassland[J]. Arid Zone Research, 2022, 39(5): 1598-1606.]
[17] 王佳, 田青, 王理德, 等. 民勤青土湖区不同年限退耕地对土壤水分与物种多样性的影响[J]. 干旱区研究, 2022, 39(2): 605-614.
[17] [Wang Jia, Tian Qing, Wang Lide, et al. Effects of different years of returning farmland on soil moisture and species diversity in Minqin Qingtu Lake area[J]. Arid Zone Research, 2022, 39(2): 605-614.]
[18] 李新乐, 吴波, 张建平, 等. 白刺沙包浅层土壤水分动态及其对不同降雨量的响应[J]. 生态学报, 2019, 39(15): 5701-5708.
[18] [Li Xinle, Wu Bo, Zhang Jianping, et al. Dynamics of shallow soil water content in Nitraria tangutorum nebkha and response to rainfall[J]. Acta Ecologica Sinica, 2019, 39(15): 5701-5708.]
[19] Fay P A, Blair J M, Smith M D, et al. Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function[J]. Biogeosciences, 2011, 8(10): 3053-3068.
[20] 魏永霞, 王鹤, 刘慧, 等. 生物炭对黑土区土壤水分及其入渗性能的影响[J]. 农业机械学报, 2019, 50(9): 290-299.
[20] [Wei Yongxia, Wang He, Liu Hui, et al. Effect of biochar on soil moisture and its infiltration performance in black soil area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 290-299.]
[21] 郑飞龙, 王西娜, 葛敏, 等. 压砂条件下灰钙土地区农田土壤水分垂直入渗特征研究[J]. 土壤通报, 2021, 52(2): 314-321.
[21] [Zheng Feilong, Wang Xina, Ge Min, et al. Characteristics of vertical water infiltration in a sierozem soil under gravel-sand mulching condition[J]. Chinese Journal of Soil Science, 2021, 52(2): 314-321.]
[22] 汪璇, 杜树汉, 邓利梅, 等. 土壤不同孔隙度对川西典型植被系统水源涵养的影响[J]. 中国水土保持科学, 2023, 21(1): 19-28.
[22] [Wang Xuan, Du Shuhan, Deng Limei, et al. Effects of different soil porosity on the water conservation of typical vegetation system in western Sichuan[J]. Science of Soil and Water Conservation, 2023, 21(1): 19-28.]
[23] 陈娟, 陈林, 宋乃平, 等. 荒漠草原不同土壤类型水分入渗特征[J]. 水土保持学报, 2018, 32(4): 18-23.
[23] [Chen Juan, Chen Lin, Song Naiping, et al. Soil infiltration characteristics of different soils types in desert steppe[J]. Journal of Soil and Water Conservation, 2018, 32(4): 18-23.]
[24] 苏莹, 陈林, 李月飞, 等. 荒漠草原不同类型土壤水分时空变化特征[J]. 干旱区研究, 2018, 35(6): 1308-1316.
[24] [Su Ying, Chen Lin, Li Yuefei, et al. Spatiotemporal variation of moisture content of different soil types in desert steppe[J]. Arid Zone Research, 2018, 35(6): 1308-1316.]
[25] 吴世磊, 刘怀谷, 陈德朝, 等. 川西北高寒沙地不同恢复年限对土壤水分变化的影响[J]. 四川林业科技, 2022, 43(6): 57-62.
[25] [Wu Shilei, Liu Huaigu, Chen Dechao, et al. Effects of different restoration years on soil moisture in alpine sandy land of Northwest Sichuan[J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(6): 57-62.]
[26] 牛存洋, 阿拉木萨, 刘亚, 等. 科尔沁沙地固沙植物根系与土壤水分特征研究[J]. 干旱区资源与环境, 2015, 29(10): 106-111.
[26] [Niu Cunyang, Alasamu, Liu Ya, et al. The characteristics of sand-fixation plantations roots and soil moisture in Horqin sandy land[J]. Journal of Arid Land Resources and Environment, 2015, 29(10): 106-111.]
[27] Gao G L, Ding G D, Zhao Y Y, et al. Fractal approach to estimating changes in soil properties following the establishment of Caragana korshinskii shelterbelts in Ningxia, NW China[J]. Ecological Indicators, 2014, 43: 236-243.
[28] 薛毅, 王兴, 宋乃平, 等. 荒漠草原不同大小“土岛”生境中短花针茅种群小尺度点格局分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 211-220.
[28] [Xue Yi, Wang Xing, Song Naiping, et al. Fine-scale spatial point patterns of Stipa breviflora population at different “Soil Island” habitat sizes in desert steppe[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2019, 45(2): 211-220.]
[29] 宋乃平, 王兴, 陈林, 等. 荒漠草原“土岛”生境群落物种共存机制[J]. 生物多样性, 2018, 26(7): 667-677.
[29] [Song Naiping, Wang Xing, Chen Lin, et al. Co-existence mechanims of plant species within “soil islands” habitat of desert steppe[J]. Biodiversity Science, 2018, 26(7): 667-677.]
[30] 宋乃平, 吴旭东, 潘军, 等. 荒漠草原人工柠条林对土壤质地演进过程的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 703-711.
[30] [Song Naiping, Wu Xudong, Pan Jun, et al. Impacts of artificial Caragana intermediastand on soil texture evolution in desert steppe[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2015, 41(6): 703-711.]
[31] 陈晓莹. 荒漠草原两种典型土壤的水分特征及其影响因素[D]. 银川: 宁夏大学, 2020.
[31] [Chen Xiaoying. Water Characteristics of Two Typical Soil Types in Desert Steppe and Their Influencing Factors[D]. Yinchuan: Ningxia University, 2020.]
[32] 魏雅芬, 郭柯, 陈吉泉. 降雨格局对库布齐沙漠土壤水分的补充效应[J]. 植物生态学报, 2008, 32(6): 1346-1355.
[32] [Wei Yafen, Guo Ke, Chen Jiquan. Effect of precipitation pattern on recruitment of soil water in Kubuqi desert, northwestern China[J]. Journal of Plant Ecology, 2008, 32(6): 1346-1355.]
[33] Famiglietti J S, Rudnicki J W, Rodell M. Variability in surface moisture content along a hillslope transect: Rattlesnake hill, texas[J]. Journal of Hydrology, 1998, 210: 259-281.
[34] 杨磊, 张涵丹, 陈利顶. 黄土宽梁缓坡丘陵区次降雨对土壤水分补给效率与阈值研究[J]. 中国科学: 地球科学, 2018, 48(4): 457-466.
[34] [Yang Lei, Zhang Handan, Chen Liding. Identification on threshold and efficiency of rainfall replenishment to soil water in semi-arid loess hilly areas[J]. Scientia Sinica(Terrae), 2018, 48(4): 457-466.]
[35] 朱海, 胡顺军, 陈永宝. 古尔班通古特沙漠南缘固定沙丘土壤水分时空变化特征[J]. 土壤学报, 2016, 53(1): 117-126.
[35] [Zhu Hai, Hu Shunjun, Chen Yongbao. Spatio-temporal variation of soil moisture in fixed dunes at the southern edge of Gurbantunggut Desert[J]. Acta Pedologica Sinica, 2016, 53(1): 117-126.]
[36] 陈洪松, 邵明安, 王克林. 黄土区荒草地和裸地土壤水分的循环特征[J]. 应用生态学报, 2005, 16(10): 1853-1857.
[36] [Chen Hongsong, Shao Ming’an, Wang Kelin. Water cycling characteristics of grassland and bare land soils on Loess Plateau[J]. Chinese Journal of Applied Ecology, 2005, 16(10): 1853-1857.]
[37] 张敏, 刘爽, 刘勇, 等. 黄土丘陵缓坡风沙区不同土地利用类型土壤水分变化特征[J]. 水土保持学报, 2019, 33(3): 115-120, 128.
[37] [Zhang Min, Liu Shuang, Liu Yong, et al. Soil moisture variation characteristics of different land use types in the moderate slope sandy area of Loess Hilly Region[J]. Journal of Soil and Water Conservation, 2019, 33(3): 115-120, 128.]
[38] 陈晓莹, 陈林, 宋乃平, 等. 荒漠草原两种类型土壤的水分动态对比[J]. 应用生态学报, 2020, 31(5): 1560-1570.
[38] [Chen Xiaoying, Chen Lin, Song Naiping, et al. Comparison on moisture dynamics of two different soil types in desert steppe[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1560-1570.]
[39] 余轩, 王兴, 吴婷, 等. 荒漠草原植物多样性恢复与土壤生境的关系[J]. 生态学报, 2021, 41(21): 8516-8524.
[39] [Yu Xuan, Wang Xing, Wu Ting, et al. Relationship between restoration of plant diversity and soil habitat in desert steppe[J]. Acta Ecologica Sinica, 2021, 41(21): 8516-8524.]
[40] Xie Z K, Wang Y J, Cheng G D, et al. Particle-size effects on soil temperature, evaporation, water use efficiency and watermelon yield in fields mulched with gravel and sand in semi-arid Loess Plateau of Northwest China[J]. Agricultural Water Management, 2010, 97(6): 917-923.
[41] 沈菊, 辛萍萍, 杨起楠, 等. 柴达木盆地东部浅层土壤水分增量对降水的响应[J]. 中国农学通报, 2022, 38(35): 54-61.
[41] [Shen Ju, Xin Pingping, Yang Qinan, et al. Response of shallow soil moisture increment to precipitation in eastern Qaidam Basin[J]. Chinese Agricultural Science Bulletin, 2022, 38(35): 54-61.]
[42] 杨启红, 陈丽华, 张富, 等. 土壤水分变异对降雨和植被的响应[J]. 北京林业大学学报, 2008, 30(S2): 88-94.
[42] [Yang Qihong, Chen Lihua, Zhang Fu, et al. Responses of soil moisture variations to rainfall and vegetation[J]. Journal of Beijing Forestry University, 2008, 30(S2): 88-94.]
[43] 石建周, 刘贤德, 田青, 等. 六盘山半干旱区华北落叶松林坡面土壤含水量的降雨响应[J]. 干旱区研究, 2023, 40(4): 594-604.
[43] [Shi Jianzhou, Liu Xiande, Tian Qing, et al. Rainfall response of soil water content on a slope of Larix principis-rupprechtii plantation in the semi-arid Liupan Mountains[J]. Arid Zone Research, 2023, 40(4): 594-604.]
[44] 王涛. 旱地冬小麦不同覆盖方式夏闲期土壤蓄水与降水量和地温的关系研究[D]. 杨凌: 西北农林科技大学, 2022.
[44] [Wang Tao. Study on the Relationship between Soil Water Storage with Precipitation and Soil Temperature during the Summer Fallow Period of Dryland Winter Wheat under Different Mulching Methods[D]. Yangling: Northwest Agricultural & Forestry University, 2022.]
[45] 段民福, 廖超英, 孙长忠, 等. 毛乌素沙地樟子松人工林土壤物理性质的时空变异规律[J]. 西北农业学报, 2012, 21(3): 188-192.
[45] [Duan Minfu, Liao Chaoying, Sun Changzhong, et al. Spatio-temporal variabilities of soil physical properties of Pinus sylvestris var. mongolica artificial forest in Mu Us Desert[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(3): 188-192.]
[46] 常昌明, 牛建明, 王海, 等. 小针茅荒漠草原土壤水分动态及其对降雨的响应[J]. 干旱区研究, 2016, 33(2): 260-265.
[46] [Chang Changming, Niu Jianming, Wang Hai, et al. Dynamic change of soil moisture and its response to rainfall in a Stipa klemenzii steppe[J]. Arid Zone Research, 2016, 33(2): 260-265.]
Outlines

/