Weather and Climate

Objective weather classification of persistent floating dust weather in the Tarim Basin

  • Congzhen ZHU ,
  • Tianliang ZHAO ,
  • Lu MENG ,
  • Xinghua YANG ,
  • Qing HE ,
  • MAMTIMIN Ali
Expand
  • 1. Institute of Desert Meteorology, China Meteorological Administration, National Observation and Research Station of Desert Meteorology, Taklimakan Desert of Xinjiang, Taklimakan Desert Meteorology Field Experiment Station of CMA, Xinjiang Key Laboratory of Desert Meteorology and Sandstorm, Urumqi 830002, Xinjiang, China
    2. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
    3. School of Geography Science, Shanxi Normal University, Taiyuan 030032, Shanxi, China

Received date: 2023-02-17

  Revised date: 2023-05-16

  Online published: 2023-09-28

Abstract

This study utilized observational data on floating dust days from multiple stations across the Tarim Basin spanning 2011 to 2020. In total, 396 days characterized by persistent floating dust were selected. Employing ERA5 meteorological reanalysis data, the PCT algorithm was used to objectively classify near-surface and upper-layer circulation patterns associated with persistent floating dust in the Tarim Basin. Furthermore, typical synoptic processes accompanying persistent floating dust were selected for analysis. The aim was to elucidate the relationship between persistent floating dust and synoptic circulation at different altitudes. The findings revealed three distinct near-surface weather patterns during persistent floating dust days: high-pressure front, high-pressure bottom, and uniform pressure field. Variations in meteorological conditions and pollutant concentrations were evident among these surface weather patterns. The near-surface weather system evolved from the high-pressure front to high-pressure bottom, culminating in the uniform pressure field. The upper-layer weather system alternated between the westerly trough type and the high-pressure ridge-zonal latitudinal type. As the Siberian cold high-pressure system moved eastward and southward, upper-layer circulations were influenced by the westerly trough and the Iranian high-pressure system. Persistent floating dust events occurred and developed alongside elevated near-surface PM10 concentrations. These events concluded when a near-surface uniform pressure field prevailed, marked by limited air pressure system activity and an upper-layer circulation characterized by the zonal latitudinal pattern.

Cite this article

Congzhen ZHU , Tianliang ZHAO , Lu MENG , Xinghua YANG , Qing HE , MAMTIMIN Ali . Objective weather classification of persistent floating dust weather in the Tarim Basin[J]. Arid Zone Research, 2023 , 40(9) : 1391 -1403 . DOI: 10.13866/j.azr.2023.09.03

References

[1] 陈思宇, 黄建平, 李景鑫, 等. 塔克拉玛干沙漠和戈壁沙尘起沙, 传输和沉降的对比研究[J]. 中国科学: 地球科学, 2017, 47(8): 939-957.
[1] [Chen Siyu, Huang Jianping, Li Jingxin, et al. Comparison of dust emissions, transport and deposition between the Taklimakan Desert and Gobi Desert[J]. Science China Earth Sciences, 2017, 47(8): 939-957.]
[2] Zhang X Y. Review on sources and transport of loess materials on the Chinese Loess Plateau[J]. Quaternary Sciences, 2007, 7(2): 181-186.
[3] Meng L, Yang X H, Zhao T L, et al. Modeling study on three-dimensional distribution of dust aerosols during a dust storm over the Tarim Basin, Northwest China[J]. Atmospheric Research, 2019, 218: 285-295.
[4] Yang F, He Q, Huang J P, et al. Desert environment and climate observation network over the Taklimakan Desert[J]. Bulletin of the American Meteorological Society, 2021, 102(6): 1172-1191.
[5] Yang X H, Shen S H, Yang F, et al. Spatial and temporal variations of blowing dust events in the Taklimakan Desert[J]. Theoretical and Applied Climatology, 2016, 125(3-4): 669-677.
[6] 孟露, 赵天良, 何清, 等. 近30年塔里木盆地浮尘天气及持续浮尘滞空的气候特征[J]. 气象学报, 2022, 80(2): 322-333.
[6] [Meng Lu, Zhao Tianliang, He Qing, et al. Climatic characteristics of floating dust and persistent floating dust over the Tarim basin in the recent 30 years[J]. Acta Meteorologica Sinica, 2022, 80(2): 322-333.]
[7] 何清. 浮尘天气及其评价[J]. 新疆气象, 1997, 42(3): 23-25.
[7] [He Qing. Floating dust and its evaluation[J]. Xinjiang Meteorology, 1997, 42(3): 23-25.]
[8] Lue Y, Liu L, Hu X, et al. Characteristics and provenance of dustfall during an unusual floating dust event[J]. Atmospheric Environment, 2010, 44(29): 3477-3484.
[9] Chen S Y, Huang J P, Zhao C, et al. Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006[J]. Journal of Geophysical Research, 2013, 118(2): 797-812.
[10] 仇会民, 周成龙, 杨帆, 等. 塔里木盆地东部地区一次典型区域性沙尘天气分析[J]. 气象与环境学报, 2018, 34(2): 19-27.
[10] [Qiu Huimin, Zhou Chenglong, Yang Fan, et al. Analysis of a typical regional sand-dust event over the eastern Tarim Basin[J]. Journal of Meteorology and Environment, 2018, 34(2): 19-27.]
[11] 热孜瓦古·孜比布拉, 阿依谢姆古丽·孜比不, 胡素琴, 等. 喀什地区浮尘天气特征及一次重污染天气成因分析[J]. 沙漠与绿洲气象, 2021, 15(1):69-74.
[11] [Reziwagu Zibibula, Ayixiemuguli Zibibula, Hu Suqin, et al. Characteristics of floating dust weather in Kashgar Region and analysis of a heavy pollution weather[J]. Desert and Oasis Meteorology, 2021, 15(1): 69-74. ]
[12] 郭萍萍, 杨建才, 殷雪莲, 等. 甘肃省春季一次连续浮尘天气过程分析[J]. 干旱气象, 2015, 33(2): 303-309.
[12] [Guo Pingping, Yang Jiancai, Yin Xuelian, et al. Analysis of a continuous floating dust weather process in Gansu Province in spring[J]. Arid Meteorology, 2015, 33(2): 303-309.]
[13] 张迎新, 李林, 曹晓冲, 等. 京津冀地区一次持续时间较长浮尘天气的分析[J]. 沙漠与绿洲气象, 2021, 15(4): 123-129.
[13] [Zhang Yingxin, Li Lin, Cao Xiaochong, et al. Analysis of a persistent floating dust event occurring over the Beijing-Tianjin-Hebei Region[J]. Desert and Oasis Meteorology, 2021, 15(4): 123-129.]
[14] 朱从祯, 赵天良, 孟露, 等. 浮尘气溶胶对沙漠大气边界层结构作用的昼夜差异[J]. 干旱区研究, 2022, 39(4): 1017-1026.
[14] [Zhu Congzhen, Zhao Tianliang, Meng Lu, et al. Different diurnal effects of floating dust on the structures in the atmospheric boundary layer over desert areas[J]. Arid Zone Research, 2022, 39(4): 1017-1026.]
[15] 毕道金, 何清, 李京龙, 等. 基于无人机垂直观测塔克拉玛干沙漠一次沙尘污染过程研究[J]. 环境科学学报, 2022, 42(12): 298-310.
[15] [Bi Daojin, He Qing, Li Jinglong, et al. Study on a dust pollution process in Taklamakan Desert based on vertical observation by UAV[J]. Acta Scientiae Circumstantiae, 2022, 42(12): 298-310.]
[16] 何清, 赵景峰. 塔里木盆地浮尘时空分布及对环境影响的研究[J]. 中国沙漠, 1997, 17(2): 15-16, 18-22.
[16] [He Qing, Zhao Jingfeng. The studies on the distribution of floating dusts in the Tarim Basin and its effects on environment[J]. Journal of Desert Research, 1997, 17(2): 15-16, 18-22.]
[17] Chang W U, Zhan J Q. The association of weather patterns with haze episodes: Recognition by PM2.5 oriented circulation classification applied in Xiamen, Southeastern China[J]. Atmospheric Research, 2017, 197(55): 425-436.
[18] 李雪超. 兰州地区采暖期空气污染天气分型研究[D]. 兰州: 兰州大学, 2020.
[18] [Li Xuechao. Study on the Classification of Polluted Weather During the Heating Period in Lanzhou[D]. Lanzhou: Lanzhou University, 2020.]
[19] 蔡旭璋, 王成刚, 王华卿, 等. 双层PCT天气分型法的建立及其应用[J]. 中国环境科学, 2022, 42(1): 1-10.
[19] [Cai Xuzhang, Wang Chenggang, Wang Huaqing, et al. The establishment of double-layer PCT classification method and its application[J]. China Environmental Science, 2022, 42(1): 1-10.]
[20] Huth R, Climatology A. A circulation classification scheme applicable in GCM studies[J]. Theoretical, 2000, 67(1-2): 1-18.
[21] Lund A I. Map-pattern classification by statistical methods[J]. American Meteorological Society, 1963, 2(1): 56-65.
[22] Brinkmann W, Climatology A. Application of non-hierarchically clustered circulation components to surface weather conditions: Lake superior basin winter temperatures[J]. Theoretical, 1999, 63(1-2): 41-56.
[23] Cavazos T. Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the Balkans[J]. Journal of Climate, 2000, 13(10): 1718-1732.
[24] Huth R. Synoptic-climatological applicability of circulation classifications from the COST733 collection: First results[J]. Physics and Chemistry of the Earth Parts A/B/C, 2010, 35(9-12): 388-394.
[25] 张莹, 王式功, 倪长健, 等. 成都冬季PM2.5污染天气形势的客观分型研究[J]. 环境科学与技术, 2020, 43(5): 139-144.
[25] [Zhang Ying, Wang Shigong, Ni Changjian, et al. Study on an objective synoptic typing method for air pollution weather in Chengdu during winter[J]. Environmental Science & Technology, 2020, 43(5): 139-144.]
[26] 许建明, 常炉予, 马井会, 等. 上海秋冬季 PM2. 5污染天气形势的客观分型研究[J]. 环境科学学报, 2016, 36(12): 4303-4314.
[26] [Xu Jianming, Chang Luyu, Ma Jinhui, et al. Objective synoptic weather classification on PM2.5 pollution during autumn and winter seasons in Shanghai[J]. Acta Scientiae Circumstantiae, 2016, 36(12): 4303-4314.]
[27] 陆汇丞, 马翠平, 赵天良, 等. 基于PCT方法的京津冀冬季PM2. 5重污染天气型分析[J]. 环境科学学报, 2021, 41(3): 898-904.
[27] [Lu Huicheng, Ma Cuiping, Zhao Tianliang, et al. Analysis of synoptic pattern on PM2.5 heavy pollution over the Beijing-Tianjin-Hebei region in winter based on PCT[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 898-904.]
[28] 霍文. 新疆沙尘暴天气演变特征及成因分析[D]. 乌鲁木齐: 新疆师范大学, 2011.
[28] [Huo Wen. The Analysis of the Weather Development Characteristics and Causes of Sandstorm in Xinjiang[D]. Urumqi: Xinjiang Normal University, 2011.]
[29] 陈洪武, 王旭, 马禹. 塔里木盆地局地和区域性强沙尘暴天气过程研究[J]. 中国沙漠, 2003, 23(5): 57-62.
[29] [Chen Hongwu, Wang Xu, Ma Yu. A study on the local and regional strong sandstorm process in Tarim Basin[J]. Journal of Desert Research, 2003, 23(5): 57-62.]
[30] Huth R. An inter comparison of computer-assisted circulation classification methods[J]. International Journal of Climatology, 1996, 16(8): 893-922.
[31] Jiang N. A new objective procedure for classifying New Zealand synoptic weather types during 1958-2008[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2011, 31(6): 863-879.
[32] 曾文忠. 浅变塔里木热低压[J]. 新疆气象, 1986, 31(9): 16-19.
[32] [Zeng Wenzhong. Talking about heat low over Tarim Basin[J]. Xinjiang Meteorology, 1986, 31(9): 16-19.]
[33] 张寅钲, 赵勇, 霍文. 塔里木盆地夏季热低压的特征分析[J]. 成都信息工程大学学报, 2023, 38(2): 214-220.
[33] [Zhang Yinzheng, Zhao Yong, Huo Wen. Analysis on the characteristics of heat low in summer over Tarim Basin[J]. Journal of Chengdu University of Information Technology, 2023, 38(2): 214-220.]
[34] Zhang J P, Zhu T, Zhang Q H, et al. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings[J]. Atmospheric Chemistry and Physics, 2012, 12(271): 5031-5053.
Outlines

/