Application of WQSRTP method in objective forecast of high and low temperature in Gansu Province
Received date: 2023-03-24
Revised date: 2023-05-19
Online published: 2023-08-01
Based on the ECMWF fine grid numerical prediction product and the temperature observation data of the national assessment station, the weighted quasi-symmetric running training period method (WQSRTP) was used to generate the maximum (low) objective product of the smart grid in Gansu Province. The results were compared with the smart grid guidance forecast product (SCMOC) of China Meteorological Administration and the urban grid forecast product (SPCC) of Gansu Province. The results show that the WQSRTP correction method can significantly improve the ability to predict the 24 h maximum (low) temperature of the ECMWF fine grid numerical model, and the predictive accuracy of the 24 h maximum and minimum temperatures increased by 32.16% and 15.48%, respectively. Compared with SCMOC, SPCC, and ECMWF, the modified WQSRTP products are positive correction techniques, and the modified ability of maximum temperature is better than that of minimum temperature. According to the spatial error test, the WQSRTP correction method can effectively improve the accuracy of maximum (low) temperature forecast in the Qilian Mountains and the Southwest Mountains, and significantly reduce the mean absolute error. Moreover, the effect of correction for predicting the maximum temperature is better than that of minimum temperature.
Key words: high and low temperature forecast; correction skills; accuracy rate; Gansu
Jixin WANG , Qian LI , Han LI , Junxia ZHANG , Xinyu LIU . Application of WQSRTP method in objective forecast of high and low temperature in Gansu Province[J]. Arid Zone Research, 2023 , 40(7) : 1052 -1064 . DOI: 10.13866/j.azr.2023.07.03
[1] | 矫梅燕. 天气业务的现代化发展[J]. 气象, 2010, 36(7): 1-4. |
[1] | [Jiao Meiyan. Modernization process of weather forecast[J]. Meteorological Monthly, 2010, 36(7): 1-4. ] |
[2] | 金荣花, 代刊, 赵瑞霞, 等. 我国无缝隙精细化网格天气预报技术进展与挑战[J]. 气象, 2019, 45(4): 445-457. |
[2] | [Jin Ronghua, Dai Kan, Zhao Ruixia, et al. Progress and challenge of seamless fine gridded weather forecasting technology in China[J]. Meteorological Monthly, 2019, 45(4): 445-457. ] |
[3] | 韦青, 代刊, 林建, 等. 2016—2018年全国智能网格降水及温度预报检验评估[J]. 气象, 2020, 46(10): 1272-1285. |
[3] | [Wei Qing, Dai Kan, Lin Jian, et al. Evaluation on the 2016-2018 fine gridded precipitation and temperature forecasting[J]. Meteorological Monthly, 2020, 46(10): 1272-1285. ] |
[4] | 赵滨, 张博. 一种2 m温度误差订正方法在复杂地形区数值预报中的应用[J]. 大气科学学报, 2018, 41(5): 657-667. |
[4] | [Zhao Bin, Zhang Bo. Application of a bias correction scheme for 2-meter temperature levels over complex terrain[J]. Transactions of Atmospheric Sciences, 2018, 41(5): 657-667. ] |
[5] | 刘还珠, 赵声蓉, 陆志善, 等. 国家气象中心气象要素的客观预报——MOS系统[J]. 应用气象学报, 2004, 15(2): 181-191. |
[5] | [Liu Huanzhu, Zhao Shengrong, Lu Zhishan, et al. Objective element forecasts at NMC——a MOS system[J]. Journal of Applied Meteorological Science, 2004, 15(2): 181-191. ] |
[6] | 佟华, 郭品文, 朱跃建, 等. 基于大尺度模式产品的误差订正与统计降尺度气象要素预报技术[J]. 气象, 2014, 40(1): 66-75. |
[6] | [Tong Hua, Guo Pinwen, Zhu Yuejian, et al. Bias correction and statistical downscaling meteorological parameters forecast technique based on large-scale numerical model products[J]. Meteorological Monthly, 2014, 40(1): 66-75. ] |
[7] | 智协飞, 黄闻. 基于卡尔曼滤波的中国区域气温和降水的多模式集成预报[J]. 大气科学学报, 2019, 42(2): 197-206. |
[7] | [Zhi Xiefei, Huang Wen. Multimodel ensemble forecasts of surface air temperature and precipitation over China by using Kalman filter[J]. Transactions of Atmospheric Sciences, 2019, 42(2): 197-206. ] |
[8] | 刘新伟, 段伯隆, 黄武斌, 等. 基于小波分析的客观预报方法在智能网格高低温预报中的应用[J]. 大气科学学报, 2020, 43(3): 577-584. |
[8] | [Liu Xinwei, Duan Bolong, Huang Wubin, et al. Application of objective prediction method based on wavelet analysis in intelligent grid high and low temperature prediction[J]. Transactions of Atmospheric Sciences, 2020, 43(3): 577-584. ] |
[9] | 刘新伟, 刘娜, 段明铿, 等. 基于小波分析的西北区智能网格气温客观预报方法的检验评估[J]. 大气科学学报, 2020, 43(4): 673-686. |
[9] | [Liu Xinwei, Liu Na, Duan Mingkeng, et al. Test and evaluation of northwest intelligent grid temperature objective prediction method based on wavelet analysis[J]. Transactions of Atmospheric Sciences, 2020, 43(4): 673-686. ] |
[10] | Li Haochen, Yu Chen, Xia Jiangjiang, et al. A model output machine learning method for grid temperature forecasts in the Beijing Area[J]. Advances in Atmospheric Sciences, 2019, 36(10): 1156-1170. |
[11] | 陈昱文, 黄小猛, 李熠, 等. 基于ECMWF产品的站点气温预报集成学习误差订正[J]. 应用气象学报, 2020, 31(4): 494-503. |
[11] | [Chen Yuwen, Huang Xiaomeng, Li Yi, et al. Ensemble learning for bias correction of station temperature forecast based on ECMWF products[J]. Journal of Applied Meteorological Science, 2020, 31(4): 494-503. ] |
[12] | 智协飞, 王田, 季焱. 基于深度学习的中国地面气温的多模式集成预报研究[J]. 大气科学学报, 2020, 43(3): 435-446. |
[12] | [Zhi Xiefei, Wang Tian, Ji Yan. Multimodel ensemble forecasts of surface air temperature over China based on deep learning approach[J]. Transactions of Atmospheric Sciences, 2020, 43(3): 435-446. ] |
[13] | Glahn H R, Lowry D A. The use of model output statistics (MOS) in objective weather forecasting[J]. Journal of Applied Meteorology and Climatology, 1972, 11(8): 1203-1211. |
[14] | 王丹, 王建鹏, 白庆梅, 等. 递减平均法与一元线性回归法对ECMWF温度预报订正能力对比[J]. 气象, 2019, 45(9): 1310-1321. |
[14] | [Wang Dan, Wang Jianpeng, Bai Qingmei, et al. Comparative correction of air temperature forecast from ECMWF model by the decaying averaging and the simple linear regression methods[J]. Meteorological Monthly, 2019, 45(9): 1310-1321. ] |
[15] | 盛春岩, 范苏丹, 荣艳敏, 等. 几种气温客观预报方法对比及最优集成预报研究[J]. 气象, 2020, 46(10): 1351-1361. |
[15] | [Sheng Chunyan, Fan Sudan, Rong Yanmin, et al. Comparison of several objective methods and optimal consensus forecast study of temperature[J]. Meteorological Monthly, 2020, 46(10): 1351-1361. ] |
[16] | 薛谌彬, 陈娴, 张瑛, 等. ECMWF高分辨率模式2 m温度预报误差订正方法研究[J]. 气象, 2019, 45(6): 831-842. |
[16] | [Xue Chenbin, Chen Xian, Zhang Ying, et al. Bias correction method for 2 m temperature forecast of ECMWF high resolution medel[J]. Meteorological Monthly, 2019, 45(6): 831-842. ] |
[17] | 蔡凝昊, 俞剑蔚. 基于数值模式误差分析的气温预报方法[J]. 大气科学学报, 2019, 42(6): 864-873. |
[17] | [Cai Ninghao, Yu Jianwei. Temperature forecasting method based on numerical model bias analysis[J]. Transactions of Atmospheric Sciences, 2019, 42(6): 864-873. ] |
[18] | 吴启树, 韩美, 郭弘, 等. MOS温度预报中最优训练期方案[J]. 应用气象学报, 2016, 27(4): 426-434. |
[18] | [Wu Qishu, Han Mei, Guo Hong, et al. The optimal training period scheme of MOS temperature forecast[J]. Journal of Applied Meteorological Science, 2016, 27(4): 426-434. ] |
[19] | 何珊珊, 蓝盈, 戚云枫. GRAPES-GFS模式2 m温度预报的最优时窗滑动订正方法[J]. 气象科技, 2021, 49(5): 746-753. |
[19] | [He Shanshan, Lan Ying, Qi Yunfeng. Moving average of optimal time-window method for 2 m temperature forecast correction of GRAPES-GFS[J]. Meteorological Science and Technology, 2021, 49(5): 746-753. ] |
[20] | 师春香, 潘旸, 谷军霞, 等. 多源气象数据融合格点实况产品研制进展[J]. 气象学报, 2019, 77(4): 774-783. |
[20] | [Shi Chunxiang, Pan Yang, Gu Junxia, et al. A review of multi-source meteorological data fusion products[J]. Acta Meteorological Sinica, 2019, 77(4): 774-783. ] |
[21] | 曾晓青, 薛峰, 赵瑞霞, 等. 几种格点化温度滚动订正预报方案对比研究[J]. 气象, 2019, 45(7): 1009-1018. |
[21] | [Zeng Xiaoqing, Xue Feng, Zhao Ruixia, et al. Comparison study on several grid temperature rolling correction forecasting schemes[J]. Meteorological Monthly, 2019, 45(7): 1009-1018. ] |
[22] | 沈学顺, 王建捷, 李泽椿, 等. 中国数值天气预报的自主创新发展[J]. 气象学报, 2020, 78(3): 451-476. |
[22] | [Shen Xueshun, Wang Jianjie, Li Zechun, et al. China’s independent and innovative development of numerical weather prediction[J]. Acta Meteorological Sinica, 2020, 78(3): 451-476. ] |
[23] | 张红丽, 韩富强, 张良, 等. 西北地区气候暖湿化空间与季节差异分析[J]. 干旱区研究, 2023, 40(4): 517-531. |
[23] | [Zhang Hongli, Han Fuqiang, Zhang Liang, et al. Analysis of spatial and seasonal variations in climate warming and humidification in Northwest China[J]. Arid Zone Research, 2023, 40(4): 517-531. ] |
[24] | 杨维涛, 孙建国, 马恒利, 等. 地貌形态多尺度综合分类方法[J]. 干旱区研究, 2022, 39(2): 638-645. |
[24] | [Yang Weitao, Sun Jianguo, Ma Hengli, et al. A multi-scale integrated classification method for landforms[J]. Arid Zone Research, 2022, 39(2): 638-645. ] |
[25] | 周海, 秦昊, 吉璐莹, 等. 地面气象要素多模式集成预报研究进展[J]. 大气科学学报, 2022, 45(6): 815-825. |
[25] | [Zhou Hai, Qin Hao, Ji Luying, et al. Research progresses of multimodel ensemble forecast of surface meteorological elements[J]. Transactions of Atmospheric Sciences, 2022, 45(6): 815-825. ] |
[26] | 陈昱文, 黄小猛, 李熠, 等. 基于ECMWF产品的站点气温预报集成学习误差订正[J]. 应用气象学报, 2020, 31(4): 494-503. |
[26] | [Chen Yuwen, Huang Xiaomeng, Li Yi, et al. Ensemble learning for bias correction of station temperature forecast based on ECMWF products[J]. Journal of Applied Meteorological Science, 2020, 31(4): 494-503. ] |
[27] | 佟华, 张玉涛, 齐倩倩, 等. 基于CMA模式体系的京津冀地区复杂地形下冬季的精细化地面要素多模式集成预报研究[J]. 气象, 2022, 48(12): 1539-1549. |
[27] | [Tong Hua, Zhang Yutao, Qi Qianqian, et al. The multi-model blending forecasts of near-surface parameters based on CMA model system[J]. Meteorological Monthly, 2022, 48(12): 1539-1549. ] |
/
〈 | 〉 |