Weather and Climate

Spatio-temporal variation of snow cover in Altai Mountains of Xinjiang in recent 20 years and its influencing factors

  • Hong LI ,
  • Zhongqin LI ,
  • Puchen CHEN ,
  • Jiajia PENG
Expand
  • 1. College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
    2. State Key Laboratory of Cryospheric Science, Tianshan Glaciological Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    3. College of Science, Shihezi University, Shihezi 832003, Xinjiang, China

Received date: 2023-03-03

  Revised date: 2023-05-19

  Online published: 2023-08-01

Abstract

Using MOD10A2 snow product data from 2001 to 2020, along with digital elevation and meteorological data, the spatiotemporal variation of snow cover in the Altai Mountains, Xinjiang, and the influence of topographic and meteorological factors over this period were analyzed. The results indicated the following. (1) Snow cover percentage (SCP) in the Altai Mountains of Xinjiang exhibited a decreasing overall trend from 2001 to 2020, with the lowest and highest values observed in 2007 and 2010, respectively, and a variation rate of -5.69%·(10a)-1. Troughs were observed throughout the year, with maximum and minimum troughs in January and July, respectively. Seasonally, SCP increased in fall and decreased in the other three seasons. The uneven distribution of climate conditions, including temperature and precipitation, caused fluctuations in the timing of maximum annual snow cover occurrence. The Altai annual SCP reached its peak between 96.45% and 99.92%, primarily observed in January and December. The lowest coverage range was 0.84%-2.27%, which occurred in July and August. (2) SCP showed a positive correlation with altitude, with lower SCP values below 500 m (average of 8.11%) and higher values above 2000 m (average of 99.08% in an area with stable snow cover all year round). SCP varied depending on the slope, with the northwest slope exhibiting the highest values (28.45%) and the south slope showing the lowest values (18.36%). (3) Land surface temperature exhibited higher and lower distributions in the northeast and southwest, respectively, and was significantly positively correlated with altitude. Moreover, 67.65% of the Altai Mountain region showed a downward trend in snow cover frequency (SCF) from 2001 to 2020. High mountain areas experienced increasing SCF, whereas plain and river areas exhibited decreasing SCF. (4) Temperature was the main factor influencing snow cover change, being negatively correlated with SCF over 9.08 × 103 km2 (80.52% of the total Altai Mountain area). Therefore, as altitude increases, the impact of temperature on snow cover gradually diminishes. Annual average precipitation in Altai decreased gradually from northwest to southeast, and precipitation was positively correlated with 87.14% of regional SCF, with a weakened effect on SCF changes observed in high-altitude mountain areas and a more significant correlation observed in low-altitude areas.

Cite this article

Hong LI , Zhongqin LI , Puchen CHEN , Jiajia PENG . Spatio-temporal variation of snow cover in Altai Mountains of Xinjiang in recent 20 years and its influencing factors[J]. Arid Zone Research, 2023 , 40(7) : 1040 -1051 . DOI: 10.13866/j.azr.2023.07.02

References

[1] Sahu R, Gupta R D. Snow Cover Analysis in Chandra Basin of Western Himalaya from 2001 to 2016[M]. Singapore: Applications of Geomatics in Civil Engineering, Springer, 2020: 557-566.
[2] Shafiq M, Ahmed P, Islam Z, et al. Snow cover area change and its relations with climatic variability in Kashmir Himalayas, India[J]. Geocarto International, 2019, 34(6): 688-702.
[3] 周敏强, 王云龙, 梁慧, 等. 青藏高原Soumi-NPP和MODIS积雪范围产品的对比分析[J]. 冰川冻土, 2019, 41(1): 36-44.
[3] [Zhou Minqiang, Wang Yunlong, Liang Hui, et al. Comparative analysis of the snow coverage products of Soumi-NPP and MODIS in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2019, 41(1): 36-44. ]
[4] Barnett T P, Dümenil L, Schlese U, et al. The effect of Eurasian snow cover on regional and global climate variations[J]. Journal of the Atmospheric Sciences, 1989, 46(5): 661-686.
[5] 赵琴, 郝晓华, 和栋材, 等. 1980—2019年北疆积雪时空变化与气候和植被的关系[J]. 遥感技术与应用, 2021, 36(6): 1247-1258.
[5] [Zhao Qin, Hao Xiaohua, He Dongcai, et al. The relationship between the temporal and spatial changes of snow cover and climate and vegetation in Northern Xinjiang from 1980 to 2019[J]. Remote Sensing Technology and Application, 2021, 36(6): 1247-1258. ]
[6] Yasunari T. Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate[J]. Journal of the Meteorological Society of Japan, 1991, 69: 1033-1049.
[7] Xuejin T, Zhenni W, Xingmin M, et al. Spatiotemporal changes in snow cover over China during 1960-2013[J]. Atmospheric Research, 2019, 218: 183-194.
[8] 王国亚, 毛炜峄, 贺斌, 等. 新疆阿勒泰地区积雪变化特征及其对冻土的影响[J]. 冰川冻土, 2012, 34(6): 1293-1300.
[8] [Wang Guoya, Mao Weiyi, He Bin, et al. Changes in snow covers during 1961-2011 and its effects on frozen ground in Altay region, Xinjiang[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1293-1300. ]
[9] 高卫东, 魏文寿, 张丽旭. 近30 a来天山西部积雪与气候变化——以天山积雪雪崩研究站为例[J]. 冰川冻土, 2005, 27(1): 68-73.
[9] [Gao Weidong, Wei Wenshou, Zhang Lixu. Climate changes and seasonal snow cover variability in the western Tianshan Mountains, Xinjiang in 1967-2000[J]. Journal of Glaciology and Geocryology, 2005, 27(1): 68-73. ]
[10] 乔海伟, 张彦丽. 融合FY-3C号和FY-4A号卫星数据的积雪面积变化研究—以祁连山区为例[J]. 遥感技术与应用, 2020, 35(6): 1320-1328.
[10] [Qiao Haiwei, Zhang Yanli. FY-3C and FY-4A satellite data were combined to study the variation of snow cover area: A case study of Qilian Mountains[J]. Remote Sensing Technology and Application, 2020, 35(6): 1320-1328. ]
[11] 拉巴卓玛, 次珍, 普布次仁, 等. 2002—2015年西藏雅鲁藏布江流域积雪变化及影响因子分析研究[J]. 遥感技术与应用, 2018, 33(3): 508-519.
[11] [Laba Zhuoma, Cizhen, Pubu Ciren, et al. Snow cover viration and meteorological factor research in Yarlung Zangbo basin of Tibet from 2002 to 2015[J]. Remote Sensing Technology and Application, 2018, 33(3): 508-519. ]
[12] 杨俊华, 秦翔, 吴锦奎, 等. 祁连山老虎沟流域春季积雪属性的分布及变化特征[J]. 冰川冻土, 2012, 34(5): 1091-1098.
[12] [Yang Junhua, Qin Xiang, Wu Jinkui, et al. Distribution and variation of spring snow cover in Laohugou watershed of the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1091-1098. ]
[13] 唐志光, 邓刚, 胡国杰, 等. 亚洲高山区积雪物候时空动态及其对气候变化的响应[J]. 冰川冻土, 2021, 43(5): 1400-1411.
[13] [Tang Zhiguang, Deng Gang, Hu Guojie, et al. Spatiotemporal dynamics of snow phenology in the High Mountain Asia and its response to climate change[J]. Journal of Glaciology and Geocryology, 2021, 43(5): 1400-1411. ]
[14] Ali S, Cheema M J M, Waqas M M, et al. Changes in snow cover dynamics over the Indus Basin: Evidences from 2008 to 2018 MODIS NDSI trends analysis[J]. Remote Sensing, 2020, 12(17): 2782.
[15] 谭秋阳, 程磊, 徐宗学, 等. 1979—2017年雅鲁藏布江流域雪深时空分布特征及其影响因素分析[J]. 冰川冻土, 2021, 43(4): 1049-1059.
[15] [Tan Qiuyang, Cheng Lei, Xu Zongxue, et al. Spatiotemporal distribution of snow cover depth and its driving factors in the Yarlung Zangbo River basin, 1979-2017[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1049-1059. ]
[16] Chen W, Ding J, Wang J, et al. Temporal and spatial variability in snow cover over the Xinjiang Uygur Autonomous Region, China, from 2001 to 2015[J]. PeerJ, 2020, 8: e8861.
[17] 田丰, 张永宏, 王剑庚, 等. 2003—2020年新疆北部积雪因子时空变化分析[J]. 科学技术与工程, 2022, 22(17): 6818-6827.
[17] [Tian Feng, Zhang Yonghong, Wang Jiangeng, et al. Analysis of spatial-time variation of snow factorsin northern Xinjiang from 2003 to 2020[J]. Science Technology and Engineering, 2022, 22(17): 6818-6827. ]
[18] 萨楚拉, 刘桂香, 包刚, 等. 近10年新疆积雪面积时空变化研究[J]. 测绘科学, 2013, 38(1): 72-74.
[18] [Sa Chula, Liu Guixiang, Bao Gang, et al. Sptial-temporal changes of snow cover in Xinjiang in recent 10 years[J]. Science of Surveying and Mapping, 2013, 38 (1): 72-74. ]
[19] 娄梦筠, 刘志红, 娄少明, 等. 2002—2011年新疆积雪时空分布特征研究[J]. 冰川冻土, 2013, 35(5): 1095-1102.
[19] [Lou Mengyun, Liu Zhihong, Lou Shaoming, et al. Temporal and spatial distribution of snow cover in Xinjiang from 2002 to 2011[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1095-1102. ]
[20] 陈丽萍. 2001—2014年新疆阿尔泰地区积雪时空分布特征分析与研究[D]. 兰州: 西北师范大学, 2017.
[20] [Chen Liping. Analysis and Research on Temporal and Spatial Distribution Characteristics of Snow Cover From 2001 to 2014 in Altai Region of Xinjiang[D]. Lanzhou: Northwest Normal University, 2017. ]
[21] Zhong X Y, Zhang T, Su H, et al. Impacts of landscape and climatic factors on snow cover in the Altai Mountains, China[J]. Advances in Climate Change Research, 2021, 12(1): 95-107.
[22] 陈晨, 郑江华, 刘永强, 等. 近20年中国阿尔泰山区冰川湖泊对区域气候变化响应的时空特征[J]. 地理研究, 2015, 34(2): 270-284.
[22] [Zheng Jianghua, Liu Yongqiang, et al. The response of glacial lakes in the Altay Mountains of China to climate change during 1992-2003[J]. Geographical Research, 2015, 34(2): 270-284. ]
[23] 张威, 付延菁, 刘蓓蓓, 等. 阿尔泰山喀纳斯河谷晚第四纪冰川地貌演化过程[J]. 地理学报, 2015, 70(5): 739-750.
[23] [Zhang Wei, Fu Yanjing, Liu Beibei, et al. Geomorphological process of late Quaternary glaciers in Kanas River Valley of the Altay Mountains[J]. Acta Geographica Sinica, 2015, 70(5): 739-750. ]
[24] 陈爱京, 肖继东, 杨志华. 阿勒泰地区冬季积雪变化及其与气温及降水的关系[J]. 现代农业科技, 2019, 48(19): 187-190.
[24] [Chen Aijing, Xiao Jidong, Yang Zhihua. Variation of winter snow cover and its relationship with temperature and precipitation in Altay region[J]. Modern Agricultural Science and Technology, 2019, 48(19): 187-190. ]
[25] 张东良. 全新世西风模态下中亚干旱区孢粉类型多样性变化特征——以阿尔泰山为例[J]. 干旱区研究, 2022, 39(3): 667-675.
[25] [Zhang Dongliang. Changes of pollen taxa diversity in the arid Central Asia under the Holocene Westerlies Mode: A case study of the Altai Mountains[J]. Arid Zone Research, 2022, 39(3): 667-675. ]
[26] 王国亚, 毛炜峄, 贺斌, 等. 新疆阿勒泰地区积雪变化特征及其对冻土的影响[J]. 冰川冻土, 2012, 34(6): 1293-1300.
[26] [Wang Guoya, Mao Weiyi, He Bin, et al. Changes in snow covers during 1961-2011 and its effects on frozen ground in Altay region, Xinjiang[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1293-1300. ]
[27] 邹逸凡, 孙鹏, 张强, 等. 2001—2019年横断山区积雪时空变化及其影响因素分析[J]. 冰川冻土, 2021, 43(6): 1641-1658.
[27] [Zou Yifan, Sun Peng, Zhang Qiang, et al. Analysis on spatial-temporal variation of snow cover and its influencing factors in the Hengduan Mountains from 2001 to 2019[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1641-1658. ]
[28] 钟鼎杰, 孙梦鑫, 张岳, 等. 2001—2020年川西高原积雪时空变化及影响因素分析研究[J]. 干旱区资源与环境, 2021, 35(11): 111-118.
[28] [Zhong Dingjie, Sun Mengxin, Zhang Yue, et al. Spatio-temporal variation and influencing factors of snow cover in West Sichuan plateau from 2001 to 2020[J]. Journal of Arid Land Resources and Environment, 2021, 35(11): 111-118. ]
[29] 秦艳, 丁建丽, 赵求东, 等. 2001—2015年天山山区积雪时空变化及其与温度和降水的关系[J]. 冰川冻土, 2018, 40(2): 249-260.
[29] [Qin Yan, Ding Jianli, Zhao Qiudong, et al. Spatial-temporal variation of snow cover in the Tianshan Mountains from 2001 to 2015, and its relation to temperature and precipitation[J]. Journal of Glaciology and Geocryology, 2018, 40(2): 249-260. ]
[30] Wang Xianwei, Xie Hongjie, Liang Tiangang. Evaluation of MODIS snow cover and cloud mask and its application in northern Xinjiang, China[J]. Remote Sensing of Environment, 2008, 112(4): 1497-1513.
[31] 黄晓东, 张学通, 李霞, 等. 北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价[J]. 冰川冻土, 2007, 29(5): 722-729.
[31] [Huang Xiaodong, Zhang Xuetong, Li Xia, et al. Accuracy analysis for MODIS snow products of MOD10A1 and MOD10A2 in northern Xinjiang area[J]. Journal of Glaciology and Geocryology, 2007, 29(5): 722-729. ]
[32] Ding Y, Peng S. Spatiotemporal trends and attribution of drought across China from 1901-2100[J]. Sustainability, 2020, 12: 477.
[33] Peng S, Ding Y, Liu W, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11(4): 1931-1946.
[34] 张博, 李雪梅, 秦启勇, 等. 中国天山积雪垂直分布异质性研究[J]. 干旱区地理, 2022, 45(3): 754-762.
[34] [Zhang Bo, Li Xuemei, Qin Qiyong, et al. Heterogeneity of the vertical distribution of snow cover in Chinese Tianshan Mountains[J]. Arid Land Geography, 2022, 45(3): 754-762. ]
[35] 田晓飞. 近40年波密县积雪时空分布特征分析[J]. 测绘与空间地理信息, 2023, 46(4): 152-154.
[35] [Tian Xiaofei. Analysis of spatial and temporal distribution characteristics of snow cover in Bomi County in recent 40 years[J]. Geomatics & Spatial Information Technology, 2023, 46(4): 152-154. ]
[36] 刘鑫, 王红, 陈忞, 等. 近20年三江源积雪时空变化特征及影响因子分析[J]. 湖北大学学报(自然科学版), 2023, 45(2): 246-254.
[36] [Liu Xin, Wang Hong, Chen Min, et al. Temporal and spatial variations in snow cover and factors influencing snow cover in the Sanjiangyuan Area in recent 20 years[J]. Journal of Hubei University (Natural Science), 2023, 45(2): 246-254. ]
[37] 任艳群, 刘海隆, 包安明, 等. 基于SSM/I和MODIS数据的天山山区积雪深度时空特征分析[J]. 冰川冻土, 2015, 37(5): 1178-1187.
[37] [Ren Yanqun, Liu Hailong, Bao Anming, et al. Spatial and temporal characteristics of snow depth in the Tianshan Mountains derived from SSM/I and MODIS data[J]. Journal of Glaciology and Geocryology, 2015, 37(5): 1178-1187. ]
[38] 穆振侠, 姜卉芳. 2001年至2010年昆马力克河流域积雪时空变化特性分析[J]. 资源科学, 2013, 35(1): 148-156.
[38] [Mu Zhenxia, Jiang Huifang. Spatial and temporal characteristics of snow cover in the Kunmalike River Basin from 2001 to 2010[J]. Resources Science, 2013, 35(1): 148-156. ]
[39] 党素珍, 刘昌明, 王中根, 等. 近10年黑河流域上游积雪时空分布特征及变化趋势[J]. 资源科学, 2012, 34(8): 1574-1581.
[39] [Dang Suzhen, Liu Changming, Wang Zhonggen, et al. Spatio-temporal distribution characteristics of snow cover in the upper reaches of Heihe River Basin over the past 10 years and the variation trend[J]. Resources Science, 2012, 34(8): 1574-1581. ]
[40] Shi M, Yuan Z, Hong X, et al. Spatiotemporal variation of snow cover and its response to climate change in the source region of the Yangtze River, China[J]. Atmosphere, 2022, 13(8): 1161.
[41] 叶红, 易桂花, 张廷斌, 等. 2000—2019年青藏高原积雪时空变化[J]. 资源科学, 2020, 42(12): 2434-2450.
[41] [Ye Hong, Yi Guihua, Zhang Tingbin, et al. Spatiotemporal variations of snow cover in the Qinghai Tibetan Plateau from 2000 to 2019[J]. Resources Science, 2020, 42(12): 2434-2450. ]
[42] 郑淑文, 彭亮, 何英, 等. 基于MODIS的塔什库尔干河流域积雪覆盖时空变化及地形因子分析[J]. 水电能源科学, 2019, 37(10): 25-29.
[42] [Zheng Shuwen, Peng Liang, He Ying, et al. Analysis of spatial-temporal variation of snow cover and topographic factors in Tashkurgan River based on MODIS[J]. Water Resources and Power, 2019, 37(10): 25-29. ]
[43] 王娟, 雷向杰, 卓静, 等. 秦岭主峰太白山积雪时空变化规律及驱动机制分析[J]. 干旱区资源与环境, 2021, 35(2): 59-64.
[43] [Wang Juan, Lei Xiangjie, Zhuo Jing, et al. Remote sensing monitoring change of snow cover and its influencing factors in Taibai Mountain[J]. Journal of Arid Land Resources and Environment, 2021, 35(2): 59-64. ]
[44] 田柳茜, 李卫忠, 张尧, 等. 青藏高原1979—2007年间的积雪变化[J]. 生态学报, 2014, 34(20): 5974-5983.
[44] [Tian Liuxi, Li Weizhong, Zhang Yao, et al. The analysis of snow information from 1979 to 2007 in Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2014, 34(20): 5974-5983. ]
[45] 易颖, 刘时银, 朱钰, 等. 2002—2018年叶尔羌河流域积雪时空变化研究[J]. 干旱区地理, 2021, 44(1): 15-26.
[45] [Yi Ying, Liu Shiyin, Zhu Yu, et al. Spatiotemporal variation of snow cover in the Yarkant River Basin during 2002-2018[J]. Arid Land Geography, 2021, 44(1): 15-26. ]
[46] 梁鹏斌, 李忠勤, 张慧. 2001—2017年祁连山积雪面积时空变化特征[J]. 干旱区地理, 2019, 42(1): 56-66.
[46] [Liang Pengbin, Li Zhongqin, Zhang Hui. Temporal-spatial variation characteristics of snow cover in Qilian Mountains from 2001 to 2017[J]. Arid Land Geography, 2019, 42(1): 56-66. ]
[47] Saavedra F A, Kampf S K, Fassnacht S R, et al. Changes in Andes snow cover from MODIS data, 2000-2016[J]. The Cryosphere, 2018, 12(3): 1027-1046.
[48] Bi Y, Xie H, Huang C, et al. Snow cover variations and controlling factors at upper Heihe River Basin, Northwestern China[J]. Remote Sensing, 2015, 7(6): 6741-6762.
Outlines

/