Land graveling characteristics and monitoring indicators of the Alxa Plateau
Received date: 2022-11-21
Revised date: 2023-02-16
Online published: 2023-06-21
Foundation data from which to develop indicators to monitor and evaluate the graveling land of the Alxa Plateau is required. To address this, the characteristics of surface gravel coverage (Gc), surface gravel mass per unit area (Gm), gravel mass content in the 0-5 and 5-10 cm soil depths [Gmc (0-5 cm), Gmc (5-10 cm)], and their relationships in the land graveling areas of the Alxa Plateau were assessed and analyzed using one-way analysis of variance, Duncan multiple comparisons, univariate linear regression, and correlation analysis. The average total Gc was 39.49% and the average total Gm was 3544.04 g·m-2. The Gc and Gm values at 4-8 and 8-16 mm were significantly higher when compared with the other particle sizes (P < 0.05). The coefficients of variation for Gc and Gm with a particle size of 4-8 mm were the smallest and most stable. The spatial distribution patterns of the Gc and Gm showed gradual increases from east to west and south to north. Different particle sizes (total) of the Gm and Gc showed extremely significant linear regression (P < 0.01 ), Gm could also be a good evaluation of the land graveling level. According to the classification threshold at the graveling level for Gc, the corresponding classification for Gm was determined. Except for the 2-4 mm and > 32 mm particles, the correlations between particle sizes in the Gc, Gm, and Gmc in the 0-5 cm soil layer were significantly greater when compared with the 5-10 cm soil layer, and the correlations between total Gc, Gm, and Gmc in the 0-5 cm soil layer were significantly greater when compared with the 5-10 cm soil layer. A surface gravel coverage threshold of 25% was determined for the Gobi, which is a graveling land type. The results of this study provide indicator data on which to base the monitoring and assessment of graveling land in the Alxa Plateau and other regions.
Wenjie WEN , Hao PEI , Gen BA , Yongjun WU , Zhiming LIU . Land graveling characteristics and monitoring indicators of the Alxa Plateau[J]. Arid Zone Research, 2023 , 40(6) : 926 -936 . DOI: 10.13866/j.azr.2023.06.08
[1] | 黄佳轮, 安凯旋, 陈汉林, 等. 野外砾石统计方法的应用与对比[J]. 浙江大学学报(理学版), 2020, 47(5): 601-614. |
[1] | [Huang Jialun, An Kaixuan, Chen Hanlin, et al. Application and comparison of field gravel statistical methods[J]. Journal of Zhejiang University(Science Edition), 2020, 47(5): 601-614.] |
[2] | Liu X N, Fan D X, Yu X X, et al. Effects of simulated gravel on hydraulic characteristics of overland flow under varying flow discharges, slope gradients and gravel coverage degrees[J]. Scientific Reports, 2019, 9(1): 19781. |
[3] | 马晨雷, 戴翠婷, 刘窑军, 等. 砾石覆盖对紫色土坡面流水动力学参数的影响[J]. 水土保持学报, 2019, 33(6): 150-155, 161. |
[3] | [Ma Chenlei, Dai Cuiting, Liu Yaojun, et al. Effects of gravel covering on hydraulic characteristics of slope flow on purple soil[J]. Journal of Soil and Water Conservation, 2019, 33(6): 150-155, 161.] |
[4] | 裴浩, 吴昊, 关彦如, 等. 土地沙化定义及其与沙被、草原退化、荒漠化关系的探讨[J]. 内蒙古气象, 2022(1): 16-23. |
[4] | [Pei Hao, Wu Hao, Guan Yanru, et al. Definition of land sandification and its relationship with desertification, grassland degradation and desertification[J]. Meteorology Journal of Inner Mongolia, 2022(1): 16-23.] |
[5] | 苗百岭, 裴浩, 贾成朕, 等. 砾化土地类型、监测指标及生态治理对策[J]. 内蒙古气象, 2021(6): 37-43. |
[5] | [Miao Bailing, Pei Hao, Jia Chengzhen, et al. Classification, monitoring indicators and ecologically-based management of gravelization land[J]. Meteorology Journal of Inner Mongolia, 2021(6): 37-43.] |
[6] | 吕刚, 王婷, 王韫策, 等. 辽西低山丘陵区坡地砾石含量及粒径对土壤入渗性能的影响[J]. 水土保持学报, 2017, 31(4): 86-92. |
[6] | [Lü Gang, Wang Ting, Wang Yunce, et al. Effect of gravel content and particle size on soil infiltration in low mountainous upland region of western Liaoning Province[J]. Journal of Soil and Water Conservation, 2017, 31(4): 86-92.] |
[7] | 高杨, 符素华, 罗来军, 等. 砾石覆盖度测量方法研究[J]. 水土保持通报, 2013, 33(4): 264-267, 270. |
[7] | [Gao Yang, Fu Suhua, Luo Laijun, et al. A study on measurement methods of rock fragment cover[J]. Bulletin of Soil and Water Conservation, 2013, 33(4): 264-267, 270.] |
[8] | 张克存, 张伟民, 屈建军, 等. 不同砾石盖度戈壁床面动力学特征研究[J]. 干旱区研究, 2012, 29(6): 1077-1082. |
[8] | [Zhang Kecun, Zhang Weimin, Qu Jianjun, et al. Study on dynamic properties of gobi surface with different gravel coverage[J]. Arid Zone Research, 2012, 29(6): 1077-1082.] |
[9] | Mu Y, Wang F, Zheng B Y, et al. McGET: A rapid image-based method to determine the morphological characteristics of gravels on the gobi desert surface[J]. Geomorphology, 2018, 304: 89-98. |
[10] | 高君亮, 高永, 吴波, 等. 戈壁地表土壤颗粒的空间变异特征研究[J]. 土壤, 2019, 51(1): 135-141. |
[10] | [Gao Junliang, Gao Yong, Wu Bo, et al. Spatial heterogeneity of topsoil particles in Jartai Gobi, Inner Mongolia[J]. Soils, 2019, 51(1): 135-141.] |
[11] | 肖靖安, 裴亮, 孙莉英, 等. 额济纳旗两种地貌类型戈壁纵剖面沉积物粒度特征[J]. 水土保持研究, 2021, 28(3): 38-44, 52. |
[11] | [Xiao Jingan, Pei Liang, Sun Liying, et al. Characteristics of grain sizes of sediments in two typical regions of Ejina Gobi[J]. Research of Soil and Water Conservation, 2021, 28(3): 38-44, 52.] |
[12] | 刘茜雅, 王海兵, 左合君, 等. 苏宏图戈壁沉积物分形空间变异性及其成因[J]. 干旱区地理, 2021, 44(1): 168-177. |
[12] | [Liu Xiya, Wang Haibing, Zuo Hejun, et al. Fractal spatial variability and its genesis of sediments in Suhongtu Gobi[J]. Arid Land Geography, 2021, 44(1): 168-177.] |
[13] | 曹晓阳, 穆悦, 曹晓明, 等. 基于高光谱数据的戈壁地表砾石粒径反演研究[J]. 干旱区地理, 2017, 40(2): 397-404. |
[13] | [Cao Xiaoyang, Mu Yue, Cao Xiaoming, et al. Grain size retrieving of gobi surface based on hyperspectral data[J]. Arid Land Geography, 2017, 40(2): 397-404.] |
[14] | Tan L H, Zhang W M, Qu J J, et al. Aeolian sand transport over gobi with different gravel coverages under limited sand supply: A mobile wind tunnel investigation[J]. Aeolian Research, 2013, 11: 67-74. |
[15] | Wang T, Qu J J, Tan L H, et al. Aeolian sediment transport over the Gobi with high gravel coverage under extremely strong winds in the hundred miles windy area along the Lanzhou-Xinjiang high-speed railway[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220: 104857. |
[16] | 李达净, 许端阳, 丁雪, 等. 1981—2010年中国北方风蚀气候侵蚀力演变与植被动态响应[J]. 水土保持研究, 2018, 25(2): 15-20. |
[16] | [Li Dajing, Xu Duanyang, Ding Xue, et al. Changes of wind erosion climatic erosivity and vegetation dynamics response in northern China from 1981 to 2010[J]. Research of Soil and Water Conservation, 2018, 25(2): 15-20.] |
[17] | 何磊, 马文瑛, 赵传燕. 人类活动和自然因素在阿拉善盟荒漠化过程中的相对作用[J]. 兰州大学学报(自然科学版), 2015, 51(3): 344-350. |
[17] | [He Lei, Ma Wenying, Zhao Chuanyan. Relative roles of human activities and natural elements in the desertification process in Alxa League[J]. Journal of Lanzhou University(Natural Sciences), 2015, 51(3): 344-350.] |
[18] | Yang Y Y, Qu Z Q, Shi P J, et al. Wind regime and sand transport in the corridor between the Badain Jaran and Tengger Deserts, central Alxa Plateau, China[J]. Aeolian Research, 2014, 12: 143-156. |
[19] | 万炜, 颜长珍, 肖生春, 等. 1975—2015年阿拉善高原沙漠化过程、格局与驱动机制[J]. 中国沙漠, 2018, 38(1): 17-29. |
[19] | [Wan Wei, Yan Changzhen, Xiao Shengchun, et al. Process, spatial pattern and driving mechanisms of the aeolian desertification in the Alxa Plateau from 1975 to 2015[J]. Journal of Desert Research, 2018, 38(1): 17-29.] |
[20] | 万炜, 颜长珍. 阿拉善高原生态环境退化研究进展[J]. 地球环境学报, 2018, 9(2): 109-122. |
[20] | [Wan Wei, Yan Changzhen. Research progress of eco-environmental degradation in Alxa Plateau[J]. Journal of Earth Environment, 2018, 9(2): 109-122.] |
[21] | 肖生春, 颜长珍, 田永祯, 等. 阿拉善高原沙漠化土地防治区划与治理对策[J]. 中国沙漠, 2019, 39(5): 182-192. |
[21] | [Xiao Shengchun, Yan Changzhen, Tian Yongzhen, et al. Regionalization for desertification control and countermeasures in the Alxa Plateau, China[J]. Journal of Desert Research, 2019, 39(5): 182-192.] |
[22] | 王健铭, 崔盼杰, 钟悦鸣, 等. 阿拉善高原植物区域物种丰富度格局及其环境解释[J]. 北京林业大学学报, 2019, 41(3): 14-23. |
[22] | [Wang Jianming, Cui Panjie, Zhong Yueming, et al. Biogeographic patterns and environmental interpretation of plant regional species richness in Alxa Plateau of northern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 14-23.] |
[23] | 闫瑞亚, 娄安如, 谢苏阳, 等. 阿拉善高原荒漠植物生活型组成及其与水热因子的相关性[J]. 北京师范大学学报(自然科学版), 2019, 55(3): 349-355. |
[23] | [Yan Ruiya, Lou Anru, Xie Suyang, et al. The composition and distribution pattern of plant life forms in Alxa Plateau[J]. Journal of Beijing Normal University(Natural Science), 2019, 55(3): 349-355.] |
[24] | 闫瑞亚, 娄安如. 阿拉善荒漠灌丛群落谱系结构及其影响因子[J]. 西北植物学报, 2019, 39(11): 2072-2081. |
[24] | [Yan Ruiya, Lou Anru. Phylogenetic structure of shrub community in Alxa desert and its environmental determinants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(11): 2072-2081.] |
[25] | 马雄忠, 王新平. 阿拉善高原2种荒漠植物根系构型及生态适应性特征[J]. 生态学报, 2020, 40(17): 6001-6008. |
[25] | [Ma Xiongzhong, Wang Xinping. Root architecture and adaptive strategy of two desert plants in the Alxa Plateau[J]. Acta Ecologica Sinica, 2020, 40(17): 6001-6008.] |
[26] | 曲梦君, 努尔依拉·阿巴拜克, 邹旭阁, 等. 地理距离和环境因子对阿拉善戈壁植物群落β多样性的影响[J]. 生物多样性, 2022, 30(11): 109-118. |
[26] | [Qu Mengjun, Nueryila Ababaike, Zou Xuge, et al. Influence of geographic distance and environmental factors on beta diversity of plants in the Alxa Gobi region in northern China[J]. Biodiversity Science, 2022, 30(11): 109-118.] |
[27] | 冯益明, 吴波, 周娜, 等. 基于遥感影像识别的戈壁分类体系研究[J]. 中国沙漠, 2013, 33(3): 635-641. |
[27] | [Feng Yiming, Wu Bo, Zhou Na, et al. Gobi classification system based on remote sensing image recognition[J]. Journal of Desert Research, 2013, 33(3): 635-641.] |
[28] | 冯益明, 智长贵, 姚爱冬. 基于决策树的戈壁信息提取研究[J]. 干旱区地理, 2013, 36(1): 125-130. |
[28] | [Feng Yiming, Zhi Changgui, Yao Aidong. Gobi information extraction based on decision tree classification method[J]. Arid Land Geography, 2013, 36(1): 125-130.] |
[29] | 冯益明, 吴波, 姚爱冬, 等. 戈壁分类体系与编目研究[J]. 地理学报, 2014, 69(3): 391-398. |
[29] | [Feng Yiming, Wu Bo, Yao Aidong, et al. A study on classification system and inventory of gobi[J]. Acta Geographica Sinica, 2014, 69(3): 391-398.] |
[30] | 钱广强, 董治宝, 罗万银, 等. 基于数字图像的中国西北地区戈壁表面砾石形貌特征研究[J]. 中国沙漠, 2014, 34(3): 625-633. |
[30] | [Qian Guangqiang, Dong Zhibao, Luo Wanyin, et al. Gravel morphometric analysis based on digital images of different gobi surfaces in northwestern China[J]. Journal of Desert Research, 2014, 34(3): 625-633.] |
[31] | 申元村, 王秀红, 程维明, 等. 中国戈壁综合自然区划研究[J]. 地理科学进展, 2016, 35(1): 57-66. |
[31] | [Shen Yuancun, Wang Xiuhong, Cheng Weiming, et al. Integrated physical regionalization of stony deserts in China[J]. Progress in Geography, 2016, 35(1): 57-66.] |
[32] | Shen Y P, Zhang C L, Wang X S, et al. Statistical characteristics of wind erosion events in the erosion area of northern China[J]. Catena, 2018, 167: 399-410. |
[33] | 章志鑫, 陈同德, 王颢霖, 等. 拉萨河流域不同植被类型坡面砾石形态与分布特征[J]. 水土保持研究, 2023, 30(1): 256-263. |
[33] | [Zhang Zhixin, Chen Tongde, Wang Haolin, et al. Morphology and distribution characteristics of gravel on slopes of different vegetation types in Lhasa River Basin[J]. Research of Soil and Water Conservation, 2023, 30(1): 256-263.] |
[34] | 王小燕, 王天巍, 蔡崇法, 等. 三峡库区紫色土的碎石分布特征[J]. 土壤学报, 2015, 52(2): 293-302. |
[34] | [Wang Xiaoyan, Wang Tianwei, Cai Chongfa, et al. Spatial distribution of rock fragments in purple soil in three gorges reservoir area[J]. Acta Pedologica Sinica, 2015, 52(2): 293-302.] |
/
〈 | 〉 |