Spatial-temporal variability of eolian dust in Egypt, North Africa
Received date: 2022-10-07
Revised date: 2023-02-22
Online published: 2023-06-21
The Sahara region of northern Africa is seriously affected by drought and desertification, and eolian dust activity disasters are considered severe. The arid and semi-arid regions of Egypt in northern Africa were the focus of this study. Based on daily observation data from meteorological stations between 1990 and 2020, and the data obtained from satellite remote sensing products, the spatiotemporal variability characteristics of eolian dust activity disasters in Egypt and their possible associations were assessed. The main influencing factors of eolian dust activity disasters were further discussed. The frequency of eolian dust activities in Egypt varied from 20 to 65 d·a-1 over the past 30 years, showing an overall declining trend with fluctuations. The annual average total suspended particulate (TSP) concentration in Egypt fluctuates was 400-1200 μg·mg-3 and showed an overall decreasing trend over the past 30 years. The highest TSP concentration occurred during spring in Egypt and reached over 2300 μg·m-3. Eolian dust activity in Egypt has a high intensity level when compared to other arid and semi-arid regions of the world; Egypt has the highest frequency of blowing dust, followed by dust in suspension, dust storm, and severe dust storm. The blowing dust that occurs in spring and summer accounts for more than 60% of the total eolian dust weather throughout the year. Ambient TSP concentrations in Egypt are highly correlated with the frequency of eolian dust activity due to wind erosion; There has been a deceasing trend in surface wind speed over the past 30 years, and wind erosion is an important factor affecting air quality in the oasis areas. The frequency of eolian dust activity is significantly negatively correlated with the Atlantic multidecadal oscillation with a correlation coefficient of -0.67. This work provides theoretical basis and data support for a comprehensive understanding of the spatial-temporal characteristics of eolian dust weather in Egypt, North Africa, and the prevention of dust storm disasters.
Key words: Egypt; aeolian dust; spatial-temporal change; environmental evolution
Yibo XUE , Xiaoxiao ZHANG , Jiaqiang LEI , Shengyu LI , Yongdong WANG , Yuan YOU . Spatial-temporal variability of eolian dust in Egypt, North Africa[J]. Arid Zone Research, 2023 , 40(6) : 896 -904 . DOI: 10.13866/j.azr.2023.06.05
[1] | 王训明, 周娜, 郎丽丽, 等. 风沙活动对陆地生态系统影响研究进展[J]. 地球科学进展, 2015, 30(6): 627-635. |
[1] | [Wang Xunming, Zhou Na, Lang Lili, et al. Research progress on the impact of aeolian sand activity on terrestrial ecosystems[J]. Advances in Earth Sciences, 2015, 30(6): 627-635.] |
[2] | IPCC. Climate Change 2013-The Physical Science Basis[M]. New York: Cambridge University Press, 2013: 571-597. |
[3] | IPCC. Climate Change 2021-The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2021: 1-195. |
[4] | Alfaro S C. Influence of soil texture on the binding energies of fine mineral dust particles potentially released by wind erosion[J]. Geomorphology, 2007, 93(3): 157-167. |
[5] | Goudie A S. Desert dust and human health disorders[J]. Environment International, 2014, 63: 101-113. |
[6] | 邸文婧. 北非地区气溶胶南北空间型分布特征及其成因[D]. 兰州: 兰州大学, 2020. |
[6] | [Di Wenjing. Spatial Distribution Characteristics and Genesis of Aerosols in North Africa[D]. Lanzhou: Lanzhou University, 2020.] |
[7] | Mohammed S, Muhammed E, Alaa I, et al. Long-term, high-resolution survey of atmospheric aerosols over Egypt with NASA’s MODIS data[J]. Remote Sensing, 2017, 9(10): 10-27. |
[8] | Wang Y Q, Stein A F, Draxler R R, et al. Global sand and dust storms in 2008: Observation and HYSPLIT model verification[J]. Atmospheric Environment, 2011, 45(35): 6368-6381. |
[9] | 潘琳, 韩永翔, 陆正奇, 等. 北非沙尘天气时空分布特征及其远程传输路径[J]. 中国环境科学, 2020, 40(1): 76-84. |
[9] | [Pan Lin, Han Yongxiang, Lu Zhengqi, et al. Spatio-temporal distribution characteristics of sand and dust weather in North Africa and its long-distance transmission path[J]. Chinese Journal of Environmental Science, 2020, 40(1): 76-84.] |
[10] | Imen G, S N B, Hosni G. Identifying natural dust source regions over the Middle-East and North-Africa: Estimation of dust emission potential[J]. Earth-Science Reviews, 2017, 165: 342-355. |
[11] | Hamdy K. Elminir. Dependence of urban air pollutants on meteorology[J]. Science of the Total Environment, 2005, 350(1): 225-237. |
[12] | Ehteram J, Maryam R, Ommolbanin B, et al. Spatiotemporal variability of sand-dust storms and their influencing factors in the MENA region[J]. Theoretical and Applied Climatology volume, 2022, 149: 1357-1371. |
[13] | 李双林, 王彦明, 郜永祺. 北大西洋年代际振荡(AMO)气候影响的研究评述[J]. 大气科学学报, 2009, 32(3): 458-465. |
[13] | [Li Shuanglin, Wang Yanming, Gao Yongqi. A review of the climatic effects of interdecadal oscillation (AMO) in the North Atlantic[J]. Journal of Atmospheric Sciences, 2009, 32(3): 458-465.] |
[14] | 胡淼, 龚道溢, 王璐, 等. 1—3月北极涛动对北半球热带太平洋和大西洋对流活动的可能影响[J]. 气象学报, 2012, 70(3): 479-491. |
[14] | [Hu Miao, Gong Daoyi, Wang Lu, et al. Possible effects of Arctic oscillation on tropical Pacific and Atlantic convective activities in the northern hemisphere from January to March[J]. Acta Meteorological Sinica, 2012, 70(3): 479-491.] |
[15] | 袁国映. 北非撒哈拉沙漠腹地地理环境特征——与塔克拉玛干沙漠对比[J]. 干旱区研究, 2003, 20(3): 235-239. |
[15] | [Yuan Guoying. Geographical characteristics of the hinterland of the Sahara Desert in North Africa: Comparison with the Taklamakan Desert[J]. Arid Zone Research, 2003, 20(3): 235-239.] |
[16] | Shao Y, Dong C H. A review on East Asian dust storm climate, modelling and monitoring[J]. Global and Planetary Change, 2006, 52(1-4): 1-22. |
[17] | Zhang X X, Claiborn C, Lei J Q, et al. Aeolian dust in Central Asia: Spatial distribution and temporal variability[J]. Atmospheric Environment, 2020, 238: 117734. |
[18] | 李晋昌, 董治宝. 大气降尘研究进展及展望[J]. 干旱区资源与环境, 2010, 24(2): 102-109. |
[18] | [Li Jinchang, Dong Zhibao. Research progress and prospect of atmospheric dust precipitation[J]. Resources and Environment in Arid Lands, 2010, 24(2): 102-109.] |
[19] | 刘新春, 钟玉婷, 何清, 等. 塔克拉玛干沙漠腹地及周边地区PM10时空变化特征及影响因素分析[J]. 中国沙漠, 2011, 31(2): 323-330. |
[19] | [Liu Xinchun, Zhong Yuting, He Qing, et al. Spatial-temporal variation characteristics and influencing factors of PM10 in the hinterland of Taklamakan Desert and surrounding areas[J]. Journal of Desert Research, 2011, 31(2): 323-330.] |
[20] | 李怡. 亚非夏季风系统的气候特征及其年代际变率研究[D]. 北京: 中国气象科学研究院, 2017. |
[20] | [Li Yi. Study on Climate Characteristics and Interdecadal Variability of Asian-African Summer Wind System[D]. Beijing: Chinese Academy of Meteorological Sciences, 2017.] |
[21] | 朱从祯, 赵天良, 孟露, 等. 浮尘气溶胶对沙漠大气边界层结构作用的昼夜差异[J]. 干旱区研究, 2022, 39(4): 1017-1026. |
[21] | [Zhu Congzhen, Zhao Tianliang, Meng Lu, et al. Different diurnal effects of floating dust on the structures in the atmospheric boundary layer over desert areas[J]. Arid Zone Research, 2022, 39(4): 1017-1026.] |
[22] | Zhang X X, Shi P J, Liu L Y, et al. Ambient TSP concentration and dustfall in major cities of China: Spatial distribution and temporal variability[J]. Atmospheric Environment, 2010, 44(13): 1641-1648. |
[23] | 刘新春, 钟玉婷, 何清, 等. 塔克拉玛干沙漠腹地沙尘暴过程大气颗粒物浓度及影响因素分析[J]. 中国沙漠, 2011, 31(6): 1548-1553. |
[23] | [Liu Xinchun, Zhong Yuting, He Qing, et al. Analysis of atmospheric particulate matter concentration and influencing factors during sandstorm process in the hinterland of Taklimakan Desert[J]. Journal of Desert Research, 2011, 31(6): 1548-1553.] |
[24] | Engelstaedter S, Tegen I, Washington R. North African dust emissions and transport[J]. Earth Science Reviews, 2006, 79(1-2): 73-100. |
[25] | Liu L Y, Shi P J, Gao S Y, et al. Dustfall in China’s western Loess Plateau as influenced by dust storm and haze events[J]. Atmospheric Environment, 2004, 38(12): 1699-1703. |
[26] | Kumar P, Fennell P, Britter R. Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon[J]. Science of the Total Environment, 2008, 402(1): 82-94. |
[27] | 花婷, 王训明. 东亚干旱半干旱区沙漠化与气候变化相互影响研究进展[J]. 地理科学进展, 2014, 33(6): 841-852. |
[27] | [Hua Ting, Wang Xunming. Research progress on the interaction between desertification and climate change in arid and semi-arid areas of East Asia[J]. Progress in Geography, 2014, 33(6): 841-852.] |
[28] | Zu R P, Xue X, Qiang M R, et al. Characteristics of near-surface wind regimes in the Taklimakan Desert, China[J]. Geomorphology, 2008, 96(1-2): 39-47. |
[29] | 杨兴华, 何清, 霍文, 等. 策勒绿洲-荒漠过渡带风沙前沿近地面不同方向的输沙特征[J]. 干旱区研究, 2012, 29(6): 1100-1104. |
[29] | [Yang Xinghua, He Qing, Huo Wen, et al. Sand transport characteristics of aeolian sand frontier in the Cele oasis-desert transition zone in different directions near the ground[J]. Arid Zone Research, 2012, 29(6): 1100-1104.] |
[30] | 杨兴华, 何清, 程玉景, 等. 策勒绿洲-荒漠过渡带风沙前沿近地表沙尘水平通量观测[J]. 干旱区研究, 2013, 30(6): 1100-1105. |
[30] | [Yang Xinghua, He Qing, Cheng Yujing, et al. Observation of near-surface sand and dust level flux of aeolian sand frontier in the Cele oasis-desert transition zone[J]. Arid Zone Research, 2013, 30(6): 1100-1105.] |
[31] | Shi W, Dong Z, Chen G, et al. Spatial and temporal variation of the near-surface wind environment in the Sahara Desert, North Africa[J]. Frontiers in Earth Science, 2022, 9: 789-800. |
[32] | Robaa S M. Some aspects of the urban climates of Greater Cairo Region, Egypt[J]. International Journal of Climatology, 2013, 33(15): 3206-3216. |
[33] | 张俊兰, 罗继, 王荣梅. 近20 a新疆升温融雪(冰)型洪水频次时空变化及大气环流型分析[J]. 干旱区研究, 2021, 38(2): 339-350. |
[33] | [Zhang Junlan, Luo Ji, Wang Rongmei. Combined analysis of the spatiotemporal variations in snowmelt(ice) flood frequency in Xinjiang over 20 years and atmospheric circulation patterns[J]. Arid Zone Research, 2021, 38(2): 339-350.] |
[34] | 乔少博. 冬季北极涛动/北大西洋涛动对后期东亚气候的影响及其年际间联系的变化[D]. 兰州: 兰州大学, 2018. |
[34] | [Qiao Shaobo. The Effects of Winter Arctic Oscillation/North Atlantic Oscillation on the Climate of Late East Asia and Its Interannual Relationship[D]. Lanzhou: Lanzhou University, 2018.] |
[35] | 高洁, 赵勇, 姚俊强, 等. 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022, 39(5): 1371-1384. |
[35] | [Gao Jie, Zhao Yong, Yao Junqiang, et al. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change[J]. Arid Zone Research, 2022, 39(5): 1371-1384.] |
[36] | NourEldeen N, Mao K B, Yuan Z J, et al. Analysis of the spatiotemporal change in land surface temperature for a long-term sequence in Africa (2003-2017)[J]. Remote Sensing, 2020, 12(3): 488.] |
[37] | 牟林, 吴德星, 周刚, 等. 温室气体浓度增加情景下大西洋温盐环流的演变[J]. 地球科学(中国地质大学学报), 2007, 32(1): 141-146. |
[37] | [Mou Lin, Wu Dexing, Zhou Gang, et al. Evolution of thermohaline circulation in Atlantic Ocean under the scenario of increasing greenhouse gas concentration[J]. Earth Sciences (Journal of China University of Geosciences), 2007, 32(1): 141-146.] |
[38] | 于志翔, 于晓晶, 杨帆. 近40 a中巴经济走廊气候变化时空分布特征[J]. 干旱区研究, 2021, 38(3): 695-703. |
[38] | [Yu Zhixiang, Yu Xiaojing, Yang Fan. Spatio-temporal characteristics of climate change in China-Pakistan Economic Corridor from 1980 to 2019[J]. Arid Zone Research, 2021, 38(3): 695-703.] |
[39] | Okin G S, Gillette D A, Herrick J E. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments[J]. Journal of Arid Environments, 2005, 65(2): 253-275. |
[40] | 张太西, 樊静, 李元鹏, 等. 1961—2018年新疆区域高温变化与环流和海温关系[J]. 干旱区研究, 2021, 38(5): 1274-1284. |
[40] | [Zhang Taixi, Fan Jing, Li Yuanpeng, et al. Heat wave changes and the potential causes in Xinjiang from 1961 to 2018[J]. Arid Zone Research, 2021, 38(5): 1274-1284.] |
/
〈 | 〉 |